
Department of Electronics and Computing
Higher Technical School of Engineering

MASTER’S THESIS
INTERUNIVERSITY MASTER IN

HIGH PERFORMANCE COMPUTING

Native Implementation of
OpenMP For Python

Student: Dorian Ouakli
Supervisor/s: Juan Carlos Pichel Campos

Cesar Alfredo Piñeiro Pomar

Santiago de Compostela, July 29, 2024.

.

Dedication: to Sha.

Acknowledgements

Thank you to my tutors, Juan Carlos Pichel Campos and Cesar Alfredo Piñeiro Pomar. Thank
you also to Juan Angel Lorenzo Del Castillo and Karima El Ganaoui, the heads of my special-
ization at CY Tech.

Abstract

It was previously impossible to obtain a speedup using multithreading in Python due to the
“Global Interpreter Lock” in the main Python Implementation, CPython. However, in October
2024, Python 3.13 will be released, including PEP 703 making the Global Interpreter Lock
optional in CPython.

Up to now, the only way to parallelize Python programs was to use multiple processes
and Inter Process Communication. This context made the implementation of the OpenMP
API pointless. With the Global Interpreter Lock removal in Python 3.13, providing simple
multithreading APIs becomes relevant and useful.

The concrete goals of this thesis are to design and create a Python library implementing
part of the OpenMP API, and asses the performance of this library. This has been achieved
by setting up Python without GIL, researching existing multithreading Python APIs, creating
a library design similar to OpenMP, implementing the most important features, and running
example code using our library.

Keywords:

Global Interpreter Lock

Python

CPython

PEP 703

Multithreading

OpenMP

Parallelization

Concurrency

Abstract Syntax Tree

Variable scope

Shared Memory

Contents

1 Introduction 1

2 Context 3
2.1 Multithreading In Python . 5
2.2 Parallelization In Python . 7
2.3 Ongoing Work . 8

3 Library 9
3.1 Objectives . 10
3.2 Design . 11
3.3 On-The-Fly Modifications . 14

4 Results 35
4.1 Tools . 36
4.2 Simple Sum . 37
4.3 Counting Primes . 40

5 Conclusions 45

A Simple sum, chunk size of 1000 49

B Simple sum, chunk size of 10000 51

C Simple sum, chunk size of 100000 53

D Counting primes, chunk size of 1 55

E Counting primes, chunk size of 10 57

F Counting primes, chunk size of 100 59

i

Contents

G Glossary of Acronyms 61

H Glossary of Terms 63

Bibliography 65

ii

List of Figures

3.1 Graph of the AST representation of the parallel directive’s template 18
3.2 Graph of the AST representation of a tuple assignment 21
3.3 Graph of the AST representation of the user code 30
3.4 Graph of the library modified AST . 31

4.1 Time versus number of threads for a simple sum 38
4.2 Speedup versus number of threads for a simple sum 39
4.3 Efficiency versus number of threads for a simple sum 40
4.4 Time versus number of threads for counting primes 41
4.5 Speedup versus number of threads for counting primes 42
4.6 Efficiency versus number of threads for counting primes 43

iii

List of Figures

iv

List of Tables

Simple sum, chunk size of 1000 . 49

Simple sum, chunk size of 10000 . 51

Simple sum, chunk size of 100000 . 53

Counting primes, chunk size of 1 . 55

Counting primes, chunk size of 10 . 57

Counting primes, chunk size of 100 . 59

v

List of Tables

vi

Chapter 1

Introduction

In HPC architectures1, the parallelization of computations is crucial to make the best use of
available resources. Indeed, a sequential program can only use a single CPU core. How-

ever, in a modern computer and especially in a node of a supercomputer, a program has
multiple CPU cores at its disposal.

OpenMP is one of the various tools that allow developers to parallelize their C, C++, and
Fortran programs. An interesting feature of OpenMP is that users can achieve very good
efficiency2 by adding just one line of code at the appropriate place. OpenMP is an approach
to parallelization that uses Threads3 for their lightness and shared memory.

Python, unlike C, C++, or Fortran, is a high-level programming language4. It is therefore
quick to learn and is notably used for prototyping and data analysis. However, there is no
native5 implementation of OpenMP in Python.

Multithreading has limited interest in Python because of the GIL6, which prevents the
parallel execution of Threads. [1] This makes a native implementation of OpenMP in Python
pointless since OpenMP is primarily aimed at parallelizing computations.

For several years, SamGross, a researcher at Meta, has been working on removing the GIL
from CPython, the main implementation of the Python language. In October 2024, PEP7 703,
which aims to make the GIL optional, will be included in Python 3.13. [2] This new context
makes an implementation of OpenMP in Python interesting and useful.

ThisMaster’sThesis aims to provide a first implementation of themost important OpenMP
features and to create a foundation for a library that could implement a significant part of the
OpenMP API.

1HPC: High Performance Computing
2Efficiency: Ratio between resources used and available resources
3Thread: Execution thread
4High level of abstraction: Close to natural language and problem-solving formalisms
5Native: Using the same language
6GIL: Global Interpreter Lock
7PEP: Python Enhancement Proposal

1

In the first chapter, ”Context,” we will discuss the limitations of multithreading in Python
due to the Global Interpreter Lock (GIL). The chapter discusses the current state of paral-
lelization in Python. It explores existing libraries and techniques such as threading,
multiprocessing, and concurrent.futures. The chapter also discusses the on-
going work to remove the GIL, led by Sam Gross, and the implications of this change for
Python developers. This chapter provides the necessary background and motivation for the
development of our new parallelization library.

The second chapter, ”Library,” discusses the design and implementation of our Python
package, which has the goal of bringing OpenMP-like capabilities to Python. This chapter is
organized into three sections. The first section, ”Objectives,” sets the goals of the project. It
explains the need for a user-friendly syntax that closely mimics OpenMP in C while using
Python’s standard libraries. The second section, ”Design,” describes the initial implementa-
tion, including the use of decorators and generators to manage parallel execution and task
distribution. It uses code examples to demonstrate these concepts. The third section, ”On-
the-Fly Modifications,” discusses the usability challenges of the initial implementation. It
introduces techniques for dynamically transforming user code.

The third chapter, ”Results,” addresses the usage and performance of our Python package
by introducing two examples of user code. This chapter is organized in three sections. The first
section, ”Tools,” describes the set-up, specifications, and versions used in the tests of user code.
The second section, ”Simple Sum,” discusses the challenges introduced with a lightweight par-
allelized loop body, as well as the importance of fine-tuning the library’s parameters through
a practical experiment using CESGA’s FinisTerrae III supercomputer showing the efficiency
of the parallelization. In the third section, ”Counting Primes,” we take a similar approach
of a practical experiment to show the potential this Python package could have when used
incrementally on more forgiving structures.

2

Chapter 2

Context

In this chapter we explore different methods of achieving parallelization in Python, looking
into both the challenges and current solutions available within the language. We will

discuss the limitations of multithreading in Python and move on to alternative approaches
and ongoing developments aimed at improving Python’s parallel computing capabilities. We
will see the current state and future prospects of parallelization in Python.

The first section, ”Multithreading in Python,” discusses the existing support for multi-
threading provided by the threading library. It covers the primitives introduced by the
library, such as locks, semaphores, events, and barriers, which aid in thread synchroniza-
tion. Despite the comprehensive support, the section discusses the limitations imposed by the
Global Interpreter Lock (GIL). The GIL restricts the concurrent execution of threads, making
multithreading less effective in Python. This section also discusses non-native implementa-
tions of OpenMP for Python, such as PyOMP and Pythran. We note their constraints and
limited usability.

The second section, ”Parallelization in Python,” discusses the multiprocessing li-
brary. The multiprocessing library creates isolated processes instead of threads, al-
lowing simultaneous execution of Python bytecode. This approach avoids the GIL limita-
tion by using process-based parallelism. This section explains the use of shared Queues
and Pipes for communication between processes and compares the synchronization meth-
ods available in multiprocessing to those in threading. Then, it introduces the
concurrent.futures library, which offers a higher-level interface for asynchronous
execution using either threads or processes. It also introduces the asyncio library, which
uses coroutines and an event loop for managing asynchronous tasks.

The final section, ”Ongoing Work,” discusses the efforts led by Sam Gross to remove the
GIL from CPython. It details the creation of the nogil fork and the development of PEP 703.
PEP 703 outlines the strategy for making the GIL optional in Python. This section discusses
the potential performance benefits of a no-GIL Python and the necessity for the Python com-

3

munity to adapt their programs to the new paradigm. It discusses the importance of providing
a native implementation of OpenMP in Python, because this would increase both the partic-
ipation in the transition to a no-GIL environment and the parallel computing capabilities in
Python.

4

CHAPTER 2. CONTEXT

2.1 Multithreading In Python

Python already has support for threadmanagement through its standard librarythreading.
[3] This support is quite comprehensive. The library introduces primitives for retrieving in-
formation about active threads and abstractions for using thread-local memory. Of course,
the library introduces a Thread class, representing a thread that can be started and whose
execution can be awaited. Finally, this library offers a set of common synchronization meth-
ods:

• Locks: Ensures that only one thread accesses a given resource at a time.

• Semaphores: Protects a resource with a limited number of concurrent accesses.

• Events: Allows one thread to block or unblock other threads.

• Barriers: Allows a team of threads to wait until all members reach the same point.

Despite comprehensivemultithreading support in Python, it is not widely used in practice.
Indeed, most Python operations are not thread-safe1, including a simple assignment of an
object to a variable. [4] To address this issue and for historical reasons, CPython uses a global
lock, which must be acquired to execute Python bytecode2: the Global Interpreter Lock (GIL).
The GIL has significant consequences on the performance of a multithreaded Python program
since only one thread can execute Python code at a time.

When a thread in a Python program calls an external library, this library can potentially
release the GIL during its operations. The famous scientific computing library Numpy, for
example, releases the GIL during its operations. Another thread can execute Python code
during this time. Input/output operations such as reading and writing to files or network
communications also release the GIL. Implementing graphical interfaces and client/server
architectures can benefit from using threads in Python.

There are non-native implementations of OpenMP for Python. PyOMP, an extension of
Numba, allows writing OpenMP directives directly in a Python function compiled with the
@njit decorator. [5] Numba is a library that compiles functions written in Python into
LLVM IR3 and then into machine code to take advantage of the performance and optimiza-
tions of low-level languages in Python. Numba can compile Python programs, but when a
program uses a function from a library implemented in another language, this function must
be reimplemented in Numba specifically to be compiled. A large part of the functions of ma-
jor scientific libraries has already been reimplemented in Numba, but not all, which limits the
usability of PyOMP.

1Thread-safe: Can be executed in the same memory space by multiple threads simultaneously.
2Python bytecode: Compiled form of Python code, using an instruction set specific to Python.
3LLVM IR: Intermediate Representation of the LLVM compiler allowing automatic transformations

5

2.1. Multithreading In Python

Pythran is another way to use OpenMP syntax in Python. Pythran, unlike Numba which
compiles on the fly, is an ahead-of-time compiler. Pythran is even more limited than Numba
in its support of Python. It aims to prototype mathematical functions. Important features
such as class definitions are simply not supported. [6]

6

CHAPTER 2. CONTEXT

2.2 Parallelization In Python

Given the significant limitations of multithreading in Python, the common approach to par-
allelizing a program is to use the built-in multiprocessing library. This approach in-
volves creating processes rather than threads. Each process is isolated and uses its own inter-
preter. Therefore, processes can execute Python bytecode simultaneously. Unlikethreading,
variables are private by default withmultiprocessing. Sharing is done explicitly through
communication tools such as shared Queues or Pipes that allow bidirectional exchange. Be-
sides this difference, synchronization between processes is done similarly to synchronization
between threads. The multiprocessing library provides Locks, Semaphores, Events,
Barriers, and other synchronization methods, which are implemented using IPC4. [7]

Python also has the standard libraryconcurrent.futures, which can usethreading
or multiprocessing. This library introduces the concept of an executor, allowing inde-
pendent tasks to be launched. Unlike threading and multiprocessing, the differ-
ence is that concurrent.futures does not provide synchronization methods or shared
memory management. The functions called must operate independently of other threads. [8]

A final approach to parallelization in Python uses coroutines5 to switch tasks at oppor-
tune moments. The standard library asyncio organizes this architecture with an event
loop. Some operations take time without performing calculations. The await keyword is
introduced, allowing control to be given to another coroutine while waiting for the result of
a call. [9]

4IPC: Inter Process Communication
5Coroutine: Function whose execution can be ”paused” and then resumed later.

7

2.3. Ongoing Work

2.3 Ongoing Work

Sam Gross, an engineer at Meta and co-author of the machine-learning library PyTorch, is
familiar with the challenges of parallelization in Python within the context of PyTorch devel-
opment. An RNNmodel playing the board game Hanabi against itself requires parallelization
through threads, using shared memory to update coefficients in real time. To achieve perfor-
mance gains from this parallelization, the team had to implement most of the model in C++.
If the GIL did not exist, they could have written a much larger portion of the model in Python.
Therefore, he devised a strategy to remove the GIL in CPython. [10]

After creating the nogil fork of Python 3.9, he ported his work to the latest version of
Python at the time, Python 3.12. He opened PEP 703, which defines the approach to remove
the GIL in Python. This removal is not without consequences. Some Python programs already
use threads and implicitly rely on the GIL to protect operations. These operations must be
manually protected when the GIL is removed. This is why the removal of the GIL is optional.
Python must first be compiled with the --disable-gil option, and then when running
the program, the PYTHON_GIL environment variable must be set to 0. The changes made
cause a slowdown of about 5 to 8% for programs not using threads. These programs represent
the vast majority of Python programs. [2]

In this context, a concerted effort from the Python community to convert their programs
to no-GIL is necessary to truly benefit from the removal of the GIL in CPython. This project is
part of that effort. It is now timely to provide a native implementation of OpenMP in Python,
and such an implementation will allow developers to participate in this collective effort in a
simple manner.

8

Chapter 3

Library

In this chapter we provide a comprehensive guide to the development of a native OpenMP-
like library in Python, specifically focusing on the parallel and for constructs. We

discuss the initial goals, design decisions, and the on-the-fly modifications necessary to create
a practical and user-friendly library.

The first section, ”Objectives,” discusses the goal to develop a Python package that mimics
the OpenMP syntax in C while adapting to Python’s needs. The proposed package, named
omp, should ideally use only Python’s standard libraries. The section presents an example of
how the library should be used. We mention the use of context managers for calling OpenMP
directives to make the syntax intuitive and easy to learn.

The second section, ”Design,” discusses the initial implementation of the library using
Python’s threading capabilities. It describes extending the Thread class to include ranks
and teams for task distribution. The section explains the use of decorators, specifically the
run_parallel decorator, to create and manage threads. It also introduces the concept
of generators for the for directive, discussing how to distribute an iterator across multiple
threads.

The final section, ”On-the-Fly Modifications,” discusses the limitations of the initial im-
plementation, which requires users to wrap their code in decorated functions and generators.
To improve usability, the section discusses transforming user code from the proposed syntax
to the less convenient syntax automatically. It explains the use of the inspect and ast
libraries for source code manipulation and conversion to ASTs, and the compile and exec
functions for dynamic code execution. The section notes the challenges in managing local and
shared variables and provides solutions using nonlocal variables and dummy declarations to
ensure correct variable scope and access.

9

3.1. Objectives

3.1 Objectives

We aim to create a Python package that implements the main OpenMP directives. We will
specifically focus on implementing the parallel and for constructs, and reuse the same
approach when implementing other directives and clauses. We wish to closely mimic the C
syntax of OpenMP while adapting it to the peculiarities of Python. Ideally, this library should
only use Python’s standard libraries. We have chosen to name this library omp. The name
evokes the OpenMP library and is short.

Unfortunately, the omp package name has been claimed on PyPI in the past by security
researchers who wanted to exhibit supply chain attacks through LLM1s, such as ChatGPT,
hallucinating python package names. Hopefully, our request to reclaim this package will be
accepted and we will be able to distribute our library under this convenient name.

We envision a syntax using context managers to call OpenMP directives. The advantage
of the context manager is twofold. The with keyword defines a block and thus allows delim-
iting an ”action zone.” The with keyword does not create a new scope. Variables introduced
in the block still exist after it. The primitives defined by the OpenMP API will be available in
the omp namespace via omp.<primitive>.

Here is an example of usage.

Example in C:

1 int array[10];
2 #pragma omp parallel
3 {
4 #pragma omp parallel for
5 for (int i=0; i<10; i++) {
6 array[i] = i;
7 }
8 }

Example in Python:

1 from omp import OpenMP
2 array = [None]*10
3 with OpenMP('parallel'):
4 with OpenMP('for'):
5 for i in range(10):
6 array[i] = i

1LLM: A Large Language Model is an Artificial Intelligence technique designed to handle human natural lan-
guage.

10

CHAPTER 3. LIBRARY

3.2 Design

Support for threads exists in Python through the threading library, which provides all the
synchronization tools we might need. However, there is a catch: a thread necessarily starts
by calling a function. Our first implementation will use a syntax that diverges from what we
initially envisioned.

The library defines a Thread class. We extend this class to record a rank and a team of
threads. These data are important for task distribution later on.

For the parallel directive, we use decorator notation. In Python, a decorator is a
function that takes a function as a parameter and returns a new function. A decorator can
simply note the function elsewhere, change its behavior by wrapping it, or even modify its
source code. Decorators are used by prefixing a function definition with @decorator. [11]

We define a run_parallel decorator that returns a function which creates a team of
threads to run the decorated function, then starts the threads.

run_parallel:

1 def run_parallel(func):
2 """
3 When the new function is called, creates a team of threads

that will each run the given function concurrently.
4 Decorates the given function.
5 """
6 def wrapped(*args, **kwargs):
7 team = Team(size=None, target=func, args=args,

kwargs=kwargs)
8
9 team.start()

10 team.join()
11 return wrapped

We can then use the decorator to launch a block of code on multiple threads.

Using run_parallel:

1 @run_parallel
2 def main():
3 print("Hello, world!")
4 main()

When the program is executed, we get a series of Hello, world! outputs.

11

3.2. Design

Output:

1 Hello, world!
2 Hello, world!
3 Hello, world!
4 Hello, world!

For the for directive, we turned to the concept of generators in Python. A generator is
a function that uses the yield keyword. Calling a generator does not immediately execute
the code; instead, it returns an iterable that can be used in a for loop. When iterating over this
iterable, the function executes and then pauses at the yield keyword, yielding an element
of the iterable. When the next element is needed, the function resumes execution until it
encounters yield again or reaches the end of the function. [11]

Here is a minimalist example of range implemented with a generator.

my_range:

1 def my_range(n):
2 i = 0
3 while i < n:
4 yield i
5 i += 1

Between each iteration, the value of i is not lost. We can use this concept to distribute
an existing iterator across various threads of a team.

Generator for:

1 def generator(it):
2 """
3 When called within a thread of a team, yields the

iterations for the current thread.
4
5 Overall, when all the threads of the team call this

generator, all the elements of the iterator are yielded.
6 """
7 thread: Thread = threading.current_thread()
8 for i, el in enumerate(it):
9 if i % thread.team.size == thread.rank:

10 yield el

We can then use our generator in a parallel construction.

12

CHAPTER 3. LIBRARY

Using generator:

1 import threading
2 @run_parallel
3 def main():
4 for i in generator(range(10)):
5 print(f"Thread {threading.current_thread().rank} runs

{i}.")
6 main()

When the program is executed, the iterations are distributed across the different threads.

Output:

1 Thread 0 runs 0.
2 Thread 0 runs 4.
3 Thread 0 runs 8.
4 Thread 1 runs 1.
5 Thread 1 runs 5.
6 Thread 1 runs 9.
7 Thread 2 runs 2.
8 Thread 2 runs 6.
9 Thread 3 runs 3.

10 Thread 3 runs 7.

Finally, we can implement the example given in the chapter 3: Objectives.

Implementation of the example:

1 array = [None]*10
2 @run_parallel
3 def main():
4 for i in generator(range(10)):
5 array[i] = i
6
7 main()
8 print(array)

Output:

1 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

13

3.3. On-The-Fly Modifications

3.3 On-The-Fly Modifications

This initial implementation works but remains rudimentary and inconvenient for the end
user, who must wrap their code in decorated functions and their iterators in generators. Our
solution is to transform the user code from the proposed syntax to this less convenient syntax.

The standard inspect library allows retrieving information about the current program
execution. Notably, the inspect.getsource function can retrieve the source code of a
function as a string. [12]

Manipulating the source code directly can be complicated and risky, as it would require
understanding all the peculiarities of Python syntax and anticipating special cases. Instead,
we transform the source code into an AST2, a tree-like representation of the source code that
is simple to manipulate algorithmically. The standardast library allows transforming source
code into an AST, manipulating it, and eventually converting it back into source code with
the ast.parse and ast.unparse functions. [13]

Finally, we can compile Python code on the fly using the compile and exec func-
tions. These functions can directly use the modified AST. We can use them to create the new
function, combining the previous steps within a decorator. [14]

A major difficulty with this approach is managing local and shared variables. Let’s take
an example.

Example variable:

1 import omp
2 from omp import OpenMP
3
4 @omp.enable
5 def main():
6 i = 0
7 with OpenMP("parallel"):
8 i += 1
9 print(i)

10
11 main()

The variable i is local to the main function. The with keyword does not create a new
scope, so it should always be accessible in the parallel construction. However, our transfor-
mation wraps the block in a function.

2AST: Abstract Syntax Tree

14

CHAPTER 3. LIBRARY

Transformed variable example:

1 import omp
2 from omp import OpenMP
3
4 def main():
5 i = 0
6 @omp.directives.parallel_construct.run_parallel
7 def _inner_func():
8 i += 1
9 _inner_func()

10 print(i)
11
12 main()

Output:

1 File "<stdin>", line 5, in _inner_func
2 UnboundLocalError: cannot access local variable 'i' where it is

not associated with a value

We try to modify the variable i defined in the parent function. To update the variable i,
we first considered using the globals() and locals() functions, which are accessible
for both reading and writing. [14] However, we realized that it is not possible to define
a new local variable in a function this way. Indeed, the list of local variables is defined at
the compilation of the function. We can access the list of local variables of a function
f through f.__code__.co_varnames. [15] We can use the nonlocal keyword to
make the variablei free, i.e., non-local. This keyword is also resolved at compilation, meaning
the variable must be detected as local by the compiler. [16] In some cases, the variable is
introduced before the function, and we have no issues. But in certain situations, we may
have variables introduced within the auxiliary function.

Late variable example:

1 import omp
2 from omp import OpenMP
3
4 @omp.enable
5 def main():
6 with OpenMP("parallel"):
7 i = 1

15

3.3. On-The-Fly Modifications

8 print(i)
9

10 main()

Transformed late variable example:

1 import omp
2 from omp import OpenMP
3
4 def main():
5 @omp.directives.parallel_construct.run_parallel
6 def _inner_func():
7 nonlocal i
8 i = 1
9 _inner_func()

10 print(i)
11
12 main()

Output:

1 File "<stdin>", line 4
2 SyntaxError: no binding for nonlocal 'i' found

To solve this problem, we use a dummy declaration in a branch that will never be executed.
The compiler interprets the potential declaration as a use, and the variable is defined as local.

Newly transformed late variable example:

1 import omp
2 from omp import OpenMP
3
4 def main():
5 if False:
6 i, = [None]*1
7 @omp.directives.parallel_construct.run_parallel
8 def _inner_func():
9 nonlocal i

10 i = 1
11 _inner_func()
12 print(i)

16

CHAPTER 3. LIBRARY

13
14 main()

Output:

1 1

In order to allow for these transformation, we introduce an internalDirective type. A
Directive child class is the implementation of the transformation of anOpenMP directive,
in the user code, to the less friendly internal syntax. In practice, a Directive will work
with AST directly, the transformations from source code to AST will be handled elsewhere. A
Directivemust implement a parsemethod, that takes an ASTWith object and returns
a modified With object.

In our ”late variable example”, the parallel directive’s parsemethod would receive
the AST representation of the following snippet.

Parse method input:

1 with OpenMP("parallel"):
2 i = 1

Of this With object, we mostly are interested in the body. The body of a With object
is a list of AST nodes composing the indented code block.

For the purposes of the parallel directive, we need to wrap the user code in a deco-
rated function call. We can reduce the amount of AST nodes we have to construct ourselves
by using a template.

Parallel’s directive template:

1 with _omp_internal.core.openmp.OpenMP():
2 if False:
3 pass # Replaced by shared variables declarations
4 @_omp_internal.directives.parallel_construct.run_parallel
5 def _omp_internal_inner_func():
6 pass # Replaced by user code
7 _omp_internal_inner_func()

The relevant AST nodes of the template are replaced with the user code, or our dummy
declarations. This avoid the creation of an AST tree manually which can be bothersome.

17

3.3. On-The-Fly Modifications

class’ast.M
odule

@
line

1

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.W
ith

class’ast.w
ithitem

@
line

2

i
f

F
a
l
s
e
:

class’ast.If

@
line

5

d
e
f

_
o
m
p
_
i
n
t
e
r
n
a
l
_
i
n
n
e
r
_
f
u
n
c
(
)
:

class’ast.FunctionD
ef

@
line

7

_
o
m
p
_
i
n
t
e
r
n
a
l
_
i
n
n
e
r
_
f
u
n
c
(
)

class’ast.Expr

@
line

1

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.Call

@
line

2

i
f

F
a
l
s
e
:

class’ast.Constant

@
line

3

p
a
s
s

#
R
e
p
l
a
c
e
d

b
y

s
h
a
r
e
d

v
a
r
i
a
b
l
e
s

d
e
c
l
a
r
a
t
i
o
n
s

class’ast.Pass

class’ast.argum
ents

@
line

6

p
a
s
s

#
R
e
p
l
a
c
e
d

b
y

u
s
e
r

c
o
d
e

class’ast.Pass

@
line

4

@
_
o
m
p
_
i
n
t
e
r
n
a
l
.
d
i
r
e
c
t
i
v
e
s
.
p
a
r
a
l
l
e
l
_
c
o
n
s
t
r
u
c
t
.
r
u
n
_
p
a
r
a
l
l
e
l

class’ast.A
ttribute

@
line

7

_
o
m
p
_
i
n
t
e
r
n
a
l
_
i
n
n
e
r
_
f
u
n
c
(
)

class’ast.Call

@
line

1

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.A
ttribute

class’ast.Load

@
line

4

@
_
o
m
p
_
i
n
t
e
r
n
a
l
.
d
i
r
e
c
t
i
v
e
s
.
p
a
r
a
l
l
e
l
_
c
o
n
s
t
r
u
c
t
.
r
u
n
_
p
a
r
a
l
l
e
l

class’ast.A
ttribute

@
line

7

_
o
m
p
_
i
n
t
e
r
n
a
l
_
i
n
n
e
r
_
f
u
n
c
(
)

class’ast.N
am

e

@
line

1

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.A
ttribute

@
line

4

@
_
o
m
p
_
i
n
t
e
r
n
a
l
.
d
i
r
e
c
t
i
v
e
s
.
p
a
r
a
l
l
e
l
_
c
o
n
s
t
r
u
c
t
.
r
u
n
_
p
a
r
a
l
l
e
l

class’ast.A
ttribute

@
line

1

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.A
ttribute

@
line

4

@
_
o
m
p
_
i
n
t
e
r
n
a
l
.
d
i
r
e
c
t
i
v
e
s
.
p
a
r
a
l
l
e
l
_
c
o
n
s
t
r
u
c
t
.
r
u
n
_
p
a
r
a
l
l
e
l

class’ast.N
am

e

@
line

1

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.N
am

e

Figure 3.1: Graph of the AST representation of the parallel directive’s template

18

CHAPTER 3. LIBRARY

Parallel’s directive template AST extract:

1 Module(
2 body=[
3 With(
4 items=[
5 withitem(
6 context_expr=Call(
7 func=Attribute(
8 value=Attribute(
9 value=Attribute(

10 value=Name(id='_omp_internal', ctx=Load()),
11 attr='core',
12 ctx=Load()),
13 attr='openmp',
14 ctx=Load()),
15 attr='OpenMP',
16 ctx=Load()),
17 args=[],
18 keywords=[]))],
19 body=[
20 If(
21 test=Constant(value=False),
22 body=[Pass()], # Insert our dummy declarations here.
23 orelse=[]),
24 ... # More nodes here, removed for readability.
25]
26)
27],
28 type_ignores=[]
29)

Notice the nested Attribute nodes, and their specific parameters. This AST extract
is only part of the complete AST representation of the given source code, see the full graph
in Figure 3.1. This representation is much more difficult to construct manually than source
code. By using a template, we can reuse our knowledge of the Python language to get a valid
AST representation.

Inserting the user code in the body of an AST node can be done easily. The body of an
AST Node is a list of AST Nodes. We iterate through the nodes until we find our target node,
here of type ast.Pass

19

3.3. On-The-Fly Modifications

User code insertion:

1 def replace(target: list[ast.AST], content: list[ast.AST],
match: ast.AST = ast.Pass) -> list[ast.AST]:

2 """
3 Return a new list where the elements of content are where

there is a Pass in target.
4 """
5 res = []
6 for el in target:
7 if isinstance(el, match):
8 res.extend(content)
9 else:

10 res.append(el)
11 return res

The insertion of the dummy declaration uses the same function, but we still need to gen-
erate the AST of the declaration itself. In order to simplify the generation, we decided to go
for a tuple assignment. In order to know how to generate a tuple assignment, we wrote one
and inspected its AST representation.

Tuple assignment:

1 a, b = [None]*2

Tuple assigment AST:

1 body=[
2 Assign(
3 targets=[
4 Tuple(
5 elts=[
6 Name(id='a', ctx=Store()),
7 Name(id='b', ctx=Store())],
8 ctx=Store())],
9 value=BinOp(

10 left=List(
11 elts=[
12 Constant(value=None)],
13 ctx=Load()),
14 op=Mult(),
15 right=Constant(value=2)))],

20

CHAPTER 3. LIBRARY

16 type_ignores=[])

class ’ast.Module

@line 1
a,b=[None]*2
class ’ast.Assign

@line 1
a,b=[None]*2
class ’ast.Tuple

@line 1
a,b=[None]*2
class ’ast.BinOp

@line 1
a,b=[None]*2
class ’ast.Name

@line 1
a,b=[None]*2
class ’ast.Name

class ’ast.Store

@line 1
a,b=[None]*2

class ’ast.List
class ’ast.Mult

@line 1
a,b=[None]*2
class ’ast.Constant

@line 1
a,b=[None]*2
class ’ast.Constant

class ’ast.Load

Figure 3.2: Graph of the AST representation of a tuple assignment

As we can see in Figure 3.2, the graph for this assignment is much simpler than for a
complete template. Here, we can see that the only parts to modify are the elts attribute of
the Tuple node as well as the value attribute of the Constant node. The Name nodes
we add have a single changing parameter, which will be the name of the shared variable we
want a dummy declaration of. The Constant’s value will simply be the number of shared
variables we need a dummy declaration of. Something that makes the definition of that AST
easier, is that when there are no shared variables, this assignment does not do anything, but
remains valid Python code.

Empty tuple assignment:

1 ()=[None]*0

We defined a helper function to generate the appropriate AST given a list of shared vari-
able names.

Helper function:

1 def assign_shared(shared: list[str], value: ast.AST = None) ->
ast.Assign:

21

3.3. On-The-Fly Modifications

2 """
3 Return a tuple assignment to the shared variables listed.
4 """
5
6 return [ast.Assign(
7 targets=[ast.Tuple(elts=[ast.Name(id=name,

ctx=ast.Store()) for name in shared],
8 ctx=ast.Store())],
9 value=ast.BinOp(

10 left=ast.List(elts=[ast.Constant(value=value)],
ctx=ast.Load()),

11 op=ast.Mult(),
12 right=ast.Constant(value=len(shared))
13)
14)]

Our OpenMP context manager we have been using everywhere to call OpenMP direc-
tives is actually a dummy context manager. If the code is not enabled, i.e. decorated with
@omp.enable, then the OpenMP context manager has no effect. It is only during the
preprocessing that omp.enable performs that the OpenMP call is interpreted. When
omp.enable stumbles upon a with statement, it checks if the provided context man-
ager is omp.OpenMP and then calls its _parse_With method with the AST With node
that contains the with statement and the associated block. The OpenMP class has to be a
context manager in order to be able to be used in a with statement. The fact it does noth-
ing by default allows the user to quickly switch from OpenMP enabled to OpenMP disabled
code while leaving the directives there. For the OpenMP class to keep a link between a di-
rective’s name and its implementation, we use a class dictionary. In Python, a class attribute
can be seen as a Singleton. The dictionary in the instances of our class will be shared. When
implementing a directive, we register the implementation in the OpenMP.directives
dictionary.

Registering the Parallel construct:

1 OpenMP.directives.update({'parallel': ParallelConstruct()})

Once the directives are registered, the _parse_With method can simply call the ap-
propriate directive’s parser.

22

CHAPTER 3. LIBRARY

OpenMP class:

1 class OpenMP:
2
3 """
4 This class represents a call to an OpenMP directive.
5
6 When used in omp-enabled user code, this class calls an

OpenMP directive.
7
8 When this class is used as a context manager, the with

statement is replaced
9 by the implementation of the construct.

10 """
11
12 # All the directives supported by the library. This

variable is global.
13 # To register a new directive, update

omp.openmp.OpenMP.directives.
14 directives: dict[str, Directive] = {}
15
16 def __init__(self, directive: str = ''):
17 self.directive = directive
18
19 def __enter__(self):
20 pass
21
22 def __exit__(self, exc_type, exc_value, traceback):
23 return False
24
25 def _parse_With(self, node: ast.With) -> ast.With:
26 """
27 This method is meant for internal use.
28
29 Replace this OpenMP context manager by its

implementation.
30 """
31
32 directive: str = self.directive.split()[0]
33
34 if directive in OpenMP.directives:
35 return OpenMP.directives[directive].parse(node)
36
37 return node

23

3.3. On-The-Fly Modifications

Some of the functions we showed earlier in this report take AST nodes as input. In or-
der to find the correct AST nodes in the original source tree, we need to perform a graph
search. The built-in ast library conveniently provides a NodeTransformer class that
performs a traversal of an Abstract Syntax Tree, while creating a new tree. To use the
NodeTransformer class, it is necessary to create a child class that implements custom
visitors. A visitor is a method that handles a given kind of AST Node. For instance, in our
case, we can write a visit_With visitor to handle AST With nodes in the tree. A visitor
method of a NodeTransformer returns an AST Node. This new AST Node will be in-
serted in the new tree in place of the node that was visited. The NodeTransformer class
also provides a generic_visit method, that leaves a node unchanged, and calls the ap-
propriate visitors for the child nodes. In practice, when defining a new visitor, we always call
the generic visitor on the newly created Node to ensure that all the subtree is visited.

With that knowledge, we defined anOpenMPTransformer class, that parses OpenMP
directives in the tree and gives a new, OpenMP enabled, tree. This OpenMPTransformer
has a single custom visiter, handling With AST nodes. Before making any changes, it per-
forms many checks to ensure that the Node is indeed an OpenMP directive. Wemake sure the
with statement has only one context manager. We also make sure the context manager is ref-
erenced as aCall to aName. Once this is done, we compile and evaluate the given name in
the context in which it was initially introduced. The resulting object should be our OpenMP
class. We check that it is indeed exactly this class. Since we made sure that the Name was
referencing the correct class, we can compile and evaluate the completeCall instanciating
the OpenMP class. The result of this evaluation gives us an instanciated OpenMP object.
We can call its _parse_Withmethod with the With Node that we just visited, and return
the result of this parsing.

OpenMPTransformer:

1 class OpenMPTransformer(ast.NodeTransformer):
2 """
3 Recursively find the OpenMP constructs and replace them

with their implementations.
4 """
5
6 def __init__(self, locs=None, globs=None, *args, **kwargs):
7 super().__init__(*args, **kwargs)
8
9 self.locs = locs

10 self.globs = globs
11
12 def visit_With(self, node: ast.With) -> ast.With:

24

CHAPTER 3. LIBRARY

13 # We need to make sure that this is an OpenMP construct.
14
15 # The with statement should use only one context

manager.
16 if len(node.items) != 1:
17 return self.generic_visit(node)
18
19 # Bulletproofing.
20 if not isinstance(node.items[0], ast.withitem):
21 return self.generic_visit(node)
22
23 # We are now sure we have a withitem.
24 item: ast.withitem = node.items[0]
25
26 # The context manager should be an OpenMP instanciation.
27 # This means calling the constructor.
28
29 if not isinstance(item.context_expr, ast.Call):
30 return self.generic_visit(node)
31
32 call: ast.Call = item.context_expr
33
34 if not isinstance(call.func, ast.Name):
35 return self.generic_visit(node)
36
37 name: ast.Name = call.func
38
39 # Bulletproofing.
40
41 if not isinstance(name.ctx, ast.Load):
42 return self.generic_visit(node)
43
44 # In order to check that this call indeed an OpenMP

instanciation,
45 # we will evaluate the name being called in the

function's definition namespace.
46
47 # ALERT: Catch the possible Name Exceptions when there

are other context managers...
48 expr: ast.Expression = ast.Expression(name)
49 called = eval(compile(expr, filename='<OMP Parser>',

mode='eval'), self.globs, self.locs)
50
51 if called is not omp.core.openmp.OpenMP:

25

3.3. On-The-Fly Modifications

52 return self.generic_visit(node)
53
54 # We are now sure this is an OpenMP construct. (Not

necessarily a valid one.)
55 # We run the found instanciation and run its logic on

the found construct.
56
57 # ALERT: Catch possible Name Exceptions when there are

other context managers...
58 instruction = eval(compile(ast.Expression(call),

filename='<OMP Parser>', mode='eval'), self.globs,
self.locs)

59
60 # Parsing this node **after** its children allows us to

know the exhaustive list of local variables that will be
61 # involved in the inner function definitions.
62 return instruction._parse_With(
63 ast.fix_missing_locations(self.generic_visit(node))
64)

Finally, we need to provide the user with an easy way to perform these transformations
to their source code. We decided that the user should wrap their whole code in a decorated
function. We called this decoratorenable. This decorator should receive the user’s function
as a parameter. We use the built-in library inspect’s getsource to recover the source
code of that function which we convert to an Abstract Syntax Tree. We could directly modify
this AST directly using our OpenMPTransformer, but the source code of the function we
just recovered actually includes all the decorators of the function definition. This means
that after using our OpenMPTransformer, compiling the new function would run the
enable decorator again.

This is why we also introduce an EnableFunction transformer class. This trans-
former finds theFunctionDefNode and removes itsenable decorator. EnableFunction
also adds an import to our library at the beginning of the body of the function. The library
is imported with a custom _omp_internal name. This name should not be used by the
user directly, and is used when directives need to refer to the library from the modified user
code. After making those changes, EnableFunction calls OpenMPTransformer on
the modified function definition.

26

CHAPTER 3. LIBRARY

EnableFunction:

1 class EnableFunction(ast.NodeTransformer):
2 """
3 Transforms a enable-decorated function definition into an

enabled function
4 definition without the enable decorator.
5 """
6
7 def __init__(self, locs=None, globs=None, varnames=None,

*args, **kwargs):
8 super().__init__(*args, **kwargs)
9

10 self.locs = locs
11 self.globs = globs
12 self.varnames = varnames
13 if self.varnames is None:
14 self.varnames = []
15
16 def visit_FunctionDef(self, node: ast.FunctionDef) ->

ast.FunctionDef:
17 new = copy.copy(node)
18 # Remove the last decorator which should be ours if the

user followed our documentation.
19 new.decorator_list = new.decorator_list[:-1]
20 # Inject a known name in the namespace for our library.
21 new.body = [ast.parse('import omp as _omp_internal',

mode='exec').body[0]] + new.body
22 return OpenMPTransformer(self.globs,

self.locs).visit(new)

When using our OpenMPTransformer, we need to pass the context in which the
user code was defined, which we also need to recover. Unlike the source code, we can’t
recover the defining context from the function that is passed to the decorator. Instead, we
recover the current stack Frame using inspect. A stack Frame object contains information
about the current state of variables and their scopes at a given point of the execution of a func-
tion call. The f_locals and f_globals attributes are the dictionaries of the local and
global scopes of the function. As an example,inspect.currentframe().f_locals
should be equivalent to locals()

27

3.3. On-The-Fly Modifications

Locals and globals example:

1 >>> inspect.currentframe().f_locals == locals()
2 True
3 >>> inspect.currentframe().f_globals == globals()
4 True

Also, a stack Frame object’sf_back attribute references the calling Frame object. In the
case of our decorator, the calling frame would be the one that defines the user’s function. We
can recover the globals and locals dictionaries of that frame as the context in which
the user code is defined. We can also reuse that context to compile and run the modified user
function definition. Once we ran the modified definition, we can recover the function itself
from the context and return it.

enable decorator:

1 def enable(*args, **kwargs):
2 """
3 Enable OpenMP in the given block of code.
4
5 Note: If your function has several decorators, this one

should be the first to run. (i.e. closest to the function
definition)

6
7 Use as a decorator:
8 ```
9 @omp.enable

10 def main():
11 <omp-enabled code...>
12 ```
13
14 # Call your function
15 main()
16 """
17
18 def decorator(function):
19 # The user code calls `enable` which itself calls

`decorator`.
20 # We need to go back two stack frames.
21 caller_frame = inspect.currentframe().f_back.f_back
22 globs, locs = caller_frame.f_globals,

caller_frame.f_locals
23

28

CHAPTER 3. LIBRARY

24 # Retrieve the source code of the decorated function.
25 src: str = inspect.getsource(function)
26
27 # Convert the source code to ast.
28 src_ast: ast.Module = ast.parse(src, mode='exec')
29
30 # Patch the source ast.
31 # We need to make sure that each node has a line number.
32 # Since the initial function was already compiled a

first time, we can recover the
33 # local variables the function uses from its code

object.
34 patched_ast = ast.fix_missing_locations(
35 EnableFunction(globs, locs,

function.__code__.co_varnames).visit(src_ast)
36)
37
38 # ALERT: Remove this debug print. (Shows the final

transformed source code.)
39 print(ast.unparse(patched_ast))
40
41 # Compile the patched ast.
42 patched: CodeType = compile(patched_ast,

filename=inspect.getsourcefile(function), mode='exec')
43
44 # redefine the function in the initial context.
45 # TODO: Allow enabling a function with closure (nested

enabled function)
46 # Note: This would involve locating the function

definition in the module's source code and recompile the
outer function entirely.

47 exec(patched, globs, locs)
48
49 return locs[function.__name__]
50
51 # Simple decorator.
52 if len(args) == 1 and isinstance(args[0], FunctionType):
53 return decorator(args[0])
54
55 # TODO: Parametrized decorator support.
56 # TODO: If statement support.
57 return decorator

We took a small example to showcase the on-the-fly modifications brought by our library

29

3.3. On-The-Fly Modifications

to the Abstract Syntax Tree of the user code that we can see in Figure 3.3

Example user code:

1 @omp.enable
2 def main():
3 with OpenMP("parallel"):
4 print('Hello, World')

class ’ast.Module

@line 2

def main():

class ’ast.FunctionDef

class ’ast.arguments

@line 3

with OpenMP("parallel"):

class ’ast.With

@line 1

@omp.enable

class ’ast.Attribute

class ’ast.withitem

@line 4

print('Hello, World')

class ’ast.Expr

class ’ast.Load

@line 1

@omp.enable

class ’ast.Name

@line 3

with OpenMP("parallel"):

class ’ast.Call

@line 4

print('Hello, World')

class ’ast.Call

@line 3

with OpenMP("parallel"):

class ’ast.Name

@line 3

with OpenMP("parallel"):

class ’ast.Constant

@line 4

print('Hello, World')

class ’ast.Name

@line 4

print('Hello, World')

class ’ast.Constant

Figure 3.3: Graph of the AST representation of the user code

30

CHAPTER 3. LIBRARY

class’ast.M
odule

@
line

1

d
e
f

m
a
i
n
(
)
:

class’ast.FunctionD
ef

class’ast.argum
ents

@
line

2

i
m
p
o
r
t

o
m
p

a
s

_
o
m
p
_
i
n
t
e
r
n
a
l

class’ast.Im
port

@
line

3

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.W
ith

@
line

1

@
o
m
p
.
e
n
a
b
l
e

class’ast.A
ttribute

@
line

2

i
m
p
o
r
t

o
m
p

a
s

_
o
m
p
_
i
n
t
e
r
n
a
l

class’ast.alias

class’ast.w
ithitem

@
line

4

i
f

F
a
l
s
e
:

class’ast.If

@
line

8

d
e
f

_
o
m
p
_
i
n
t
e
r
n
a
l
_
i
n
n
e
r
_
f
u
n
c
(
)
:

class’ast.FunctionD
ef

@
line

10

_
o
m
p
_
i
n
t
e
r
n
a
l
_
i
n
n
e
r
_
f
u
n
c
(
)

class’ast.Expr

class’ast.Load

@
line

1

@
o
m
p
.
e
n
a
b
l
e

class’ast.N
am

e

@
line

3

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.Call

@
line

4

i
f

F
a
l
s
e
:

class’ast.Constant

@
line

5

(
)

=
[
N
o
n
e
]

*
0

class’ast.Assign

class’ast.argum
ents

@
line

9

p
r
i
n
t
(
'
H
e
l
l
o
,

W
o
r
l
d
'
)

class’ast.Expr

@
line

7

@
_
o
m
p
_
i
n
t
e
r
n
a
l
.
d
i
r
e
c
t
i
v
e
s
.
p
a
r
a
l
l
e
l
_
c
o
n
s
t
r
u
c
t
.
r
u
n
_
p
a
r
a
l
l
e
l

class’ast.A
ttribute

@
line

10

_
o
m
p
_
i
n
t
e
r
n
a
l
_
i
n
n
e
r
_
f
u
n
c
(
)

class’ast.Call

@
line

3

w
i
t
h

O
p
e
n
M
P
(
"
p
a
r
a
l
l
e
l
"
)
:

class’ast.Constant

@
line

3

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.A
ttribute

@
line

5

(
)

=
[
N
o
n
e
]

*
0

class’ast.Tuple

@
line

5

(
)

=
[
N
o
n
e
]

*
0

class’ast.BinO
p

@
line

9

p
r
i
n
t
(
'
H
e
l
l
o
,

W
o
r
l
d
'
)

class’ast.Call

@
line

7

@
_
o
m
p
_
i
n
t
e
r
n
a
l
.
d
i
r
e
c
t
i
v
e
s
.
p
a
r
a
l
l
e
l
_
c
o
n
s
t
r
u
c
t
.
r
u
n
_
p
a
r
a
l
l
e
l

class’ast.A
ttribute

@
line

10

_
o
m
p
_
i
n
t
e
r
n
a
l
_
i
n
n
e
r
_
f
u
n
c
(
)

class’ast.N
am

e

@
line

3

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.A
ttribute

class’ast.Store

@
line

5

(
)

=
[
N
o
n
e
]

*
0

class’ast.List

class’ast.M
ult

@
line

5

(
)

=
[
N
o
n
e
]

*
0

class’ast.Constant

@
line

9

p
r
i
n
t
(
'
H
e
l
l
o
,

W
o
r
l
d
'
)

class’ast.N
am

e

@
line

9

p
r
i
n
t
(
'
H
e
l
l
o
,

W
o
r
l
d
'
)

class’ast.Constant

@
line

7

@
_
o
m
p
_
i
n
t
e
r
n
a
l
.
d
i
r
e
c
t
i
v
e
s
.
p
a
r
a
l
l
e
l
_
c
o
n
s
t
r
u
c
t
.
r
u
n
_
p
a
r
a
l
l
e
l

class’ast.A
ttribute

@
line

3

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.A
ttribute

@
line

5

(
)

=
[
N
o
n
e
]

*
0

class’ast.Constant

@
line

7

@
_
o
m
p
_
i
n
t
e
r
n
a
l
.
d
i
r
e
c
t
i
v
e
s
.
p
a
r
a
l
l
e
l
_
c
o
n
s
t
r
u
c
t
.
r
u
n
_
p
a
r
a
l
l
e
l

class’ast.N
am

e

@
line

3

w
i
t
h

_
o
m
p
_
i
n
t
e
r
n
a
l
.
c
o
r
e
.
o
p
e
n
m
p
.
O
p
e
n
M
P
(
)
:

class’ast.N
am

e

Added nodes are green. Unchanged nodes are black.
Modified nodes are purple. Removed nodes are red.

Figure 3.4: Graph of the library modified AST

31

3.3. On-The-Fly Modifications

Figures 3.4 shows the modified graphs and highlights the changes. One might notice that
the nodes that remained in the graph, but were altered are only the OpenMP instructions
themselves. We see for instance the removal of the enable decorator we mentioned earlier.

One could recognize the added nodes as the ones from the the template we saw earlier.
Notice how the Pass node of the function body was replaced with the original user code,
unchanged. See also how the Pass node of the If body was replaced with the empty,
dummy, declaration.

These modifications are performed at runtime, as soon as the main user function is de-
fined.

At this stage, the library has all the user-code transformation tools we needed to imple-
ment other directives, clauses and primitives.

We implemented the following directives:

• barrier

• critical

• for

• parallel

• parallel for

• single

We also implemented the following clauses:

• nowait

• private

• reduction

• schedule

Finally, we implemented the following primitives:

• get_num_procs

• set_num_threads

• get_max_threads

• set_num_teams

• get_max_teams

32

CHAPTER 3. LIBRARY

• get_thread_num

• get_num_threads

• get_dynamic

• set_schedule

• get_schedule

33

3.3. On-The-Fly Modifications

34

Chapter 4

Results

In this chapter we assess the performance of our solution using two user-code examples to
showcase the use and limits of our Python package.
First, in the ”Tools” section, we introduce the tooling we needed to evaluate the library’s

performance on these examples. We describe the specifications and versions used in our tests,
and show how the tests can be reproduced.

The second section, ”Simple Sum,” discusses the first use case of sample user code. It dis-
cusses the runtimes, speedup and efficiency across different numbers of threads and different
chunk sizes, and explains the results.

The third section, ”Counting Primes,” discusses our second use case, which tests a heavier
loop body than the simple sum. This allows us to see the effect of the loop body on the
runtimes, speedup, and efficiency. We will discuss the nature of the results and what lessons
can be taken from them.

35

4.1. Tools

4.1 Tools

The library, as described in this documentation, does not cover the full OpenMP API. The
coverage is however enough for some usages that we will present in this chapter.

The tests we will discuss in this chapter were performed on CESGA’s FinisTerrae III su-
percomputer. More specifically, on ilk compute nodes, each featuring:

• 2x 32 Cores Intel Xeon Ice Lake 8352Y @2.2GHz, for a total of 64 cores.

• 256GB of RAM.

• 960GB of NVMe local storage.

Naturally, the system comes with software tooling as well:

• Linux 4.18.0-305.3.1.el8_4.x86_64 GNU/Linux

• gcc (Gentoo 10.1.0-r2 p3) 10.1.0

• ldd (Gentoo 2.31-r6 p8) 2.31 (GLIBC)

• Python 3.7.8

In order to benefit running code using the omp library, we need to use a free-threaded
build of CPython. We compiled the master branch of the repository at
https://github.com/python/cpython. The latest commit included in our copy
is dated of July 28th 2024.
For reproducibility, we provide the commit hash: bc93923a2dee00751e44da58b6967c63e3f5c392.
To produce a free-threaded build, we first ran the configure scriptwith the--disable-gil
flag. We specify a prefixed installation, to prevent interfering with the system’s Python in-
stallation. We can then use that prefixed python install to create a virtual environment to run
our library in.

Configure CPython:

1 ./configure --enable-optimizations --disable-gil
--prefix=../prefix

2 make -j64
3 make install
4 ../prefix/bin/python3.14t -m venv ../free-threaded
5 . ../free-threaded/bin/activate

36

CHAPTER 4. RESULTS

4.2 Simple Sum

Our first example user code is a simple for loop computing the sum of integers ranging be-
tween 1 and N.

sum.py:

1 #!/usr/bin/env python3
2 import omp
3 from omp import OpenMP
4
5 N = 40000000
6
7
8 @omp.enable
9 def main():

10 acc = 0
11 with OpenMP("parallel"):
12 with OpenMP("for reduction(+:acc) schedule(dynamic,

10000)"):
13 for i in range(1, N):
14 acc += i
15 print("Actual result: ", acc)
16 print("Expected result:", N*(N-1)//2)
17
18
19 if __name__ == '__main__':
20 main()

We use a reduction clause to protect the acc variable, but also because it has better per-
formance than wrapping the update of acc in a critical construct. We also use dynamic
scheduling because currently, our dynamic scheduling implementation is more efficient than
our static scheduling implementation. One particularity of our dynamic scheduling imple-
mentation is that the access to the iterator is protected by a threading Lock. By increas-
ing the chunk size, we reduce the overall number of accesses to the iterator, thus reducing the
waiting time induced by the Lock. We ran the programwhile setting theOMP_NUM_THREADS
environment variable to values ranging between 1 and 64, and measured the run time using
the time utility. See the exact values in the appendices.

37

4.2. Simple Sum

0 10 20 30 40 50 60
0.4

0.6

1

2

4

6

Threads

Ti
m
e
in

se
co

nd
s(

lo
g
sc
al
e)

chunk size: 1000
chunk size: 10000
chunk size: 100000

Figure 4.1: Time versus number of threads for a simple sum

As we can see in Figure 4.1, the run time does drop significantly when increasing the
number of threads compared to a single-threaded run. For instance, the run time with 1
thread is of about 3 seconds, whereas it is of 0.7 seconds with 5 threads.

On the other hand, the run time does not decrease any further past 5 threads. There
seems to be a bottleneck issue. We believe that the main reason for that bottleneck is the
fact the body of the parallelized loop is so short. Realistically, the time spent updating the
accumulator should be similar to the time spent iterating through therange. The iteration of
the range can only be performed synchronously. The minimum run time we get is probably
the time required to iterate through the range alone, assuming the updating of acc is
ideally parallelized.

To verify this, we run a for loop that only iterates through the same range

38

CHAPTER 4. RESULTS

range footprint:

1 $ time python -c 'tuple(range(40000000))'
2
3 real 0m0.986s
4 user 0m0.726s # This is not relevant for our usecase
5 sys 0m0.253s # This is not relevant for our usecase

The time spent to unpack that range is indeed very similar to the best run times of the
parallelized simple sum.

We can also see that we get best results with a chunk size of 10000. This shows the
importance of fine-tuning parameters to the usecase.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

1

2

3

4

5

6

7

Threads

Sp
ee

du
p

chunk size: 1000
chunk size: 10000
chunk size: 100000

Ideal speedup

Figure 4.2: Speedup versus number of threads for a simple sum

In Figure 4.2, we see that we can reach a speedup of 4.3 with 5 threads. But adding threads
past 5 does not seem to improve the speedup in this example.

39

4.3. Counting Primes

0 5 10 15 20 25 30 35 40 45 50 55 60 65

0

10

20

30

40

50

60

70

80

90

100

Threads

Effi
ci
en

cy
(%

)
chunk size: 1000
chunk size: 10000
chunk size: 100000

Figure 4.3: Efficiency versus number of threads for a simple sum

Finally, we can see from Figure 4.3 that past 6 threads, the efficiency drops below 60%.
This shows that parallelizing a loop with a simple body can waste resources if the user does
not fine tune parameters such as the number of threads.

4.3 Counting Primes

Despite getting some acceleration using our library in the simple sum example, we wanted to
check that we could get better results with a heavier loop body. Here, we decide to count the
number of primes within a given range. The code is similar to our simple loop, except that
the check for primes number has aO(

√
n) complexity, which is non negligeable compared to

our previous O(1).

primes.py:

1 #!/usr/bin/env python3
2 import omp
3 from omp import OpenMP
4
5 N = 10000000
6
7
8 def prime(n):
9 for i in range(2, int(n**.5) + 1):

10 if n % i == 0:

40

CHAPTER 4. RESULTS

11 return False
12 return n > 1
13
14
15 @omp.enable
16 def main():
17 acc = 0
18 with OpenMP("parallel"):
19 with OpenMP("for reduction(+:acc) schedule(dynamic,

100)"):
20 for i in range(1, N):
21 acc += prime(i)
22 print("Actual result: ", acc)
23
24
25 if __name__ == '__main__':
26 main()

0 10 20 30 40 50 60

2

4

6

10

20

40

60

100

Threads

Ti
m
e
in

se
co

nd
s(

lo
g
sc
al
e)

chunk size: 1
chunk size: 10
chunk size: 100

Figure 4.4: Time versus number of threads for counting primes

41

4.3. Counting Primes

We can see from Figure 4.4 that as we expected, parallelizing a loop with a heavier body
is easier. We shrunk the runtime from 100 seconds to just under 2 seconds. We also see that
with a chunk size of 1, which is the default, we still manage to achieve a parallelized runtime
of 10 seconds before hitting a bottleneck again. A heavier body loop is more forgiving and
requires less fine-tuning.

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

10

20

30

40

50

60

70

80

90

Threads

Sp
ee

du
p

chunk size: 1
chunk size: 10
chunk size: 100
Ideal speedup

Figure 4.5: Speedup versus number of threads for counting primes

The results in Figure 4.5 are promising. Other than the bottleneck reached at 11 threads
with a chunk size of 1, we could not reach the speedup limit with 64 cores with higher chunk
sizes.

42

CHAPTER 4. RESULTS

0 5 10 15 20 25 30 35 40 45 50 55 60 65
0

20

40

60

80

100

120

Threads

Effi
ci
en

cy
(%

)

chunk size: 1
chunk size: 10
chunk size: 100

Figure 4.6: Efficiency versus number of threads for counting primes

Finally, the efficiency in Figure 4.6 remains above 80% with a chunk size of 100. This, once
again, shows the importance of fine-tuning the parameters. Despite the need for fine-tuning,
we believe these results are a success, and allows for incremental parallelization of user code
with minimal changes compared to, as we saw earlier, using the built-in threading library
directly.

43

4.3. Counting Primes

44

Chapter 5

Conclusions

With the upcoming release of Python 3.13 and the introduction of PEP 703, whichmakes
the Global Interpreter Lock optional, the potential for efficient multithreading in

Python becomes significant. This new context raises the usefulness of an OpenMP-like imple-
mentation for Python. The high-level nature of Python makes it an ideal language for rapid
prototyping and data analysis.

We achieved the objective of an easy-to-use syntax, similar to OpenMP in C. For this
context, we limited ourselves to implementing a subset of the OpenMP API. This support is
sufficient, particularly the critical directive as well as the reduction and private
clauses which already allow the handling of many parallelization cases.

The most complex part of the code is already implemented, and future additions are re-
formulations of what is already present. By extending our library to include more OpenMP
features, we can provide Python developers with tools to parallelize their computations ef-
fectively, similar to those available in C, C++, and Fortran.

We invite you to explore the source code at https://github.com/douakli/omp and the usage
example in examples/parallel_for.py. This example demonstrates the practical
application of our implementation and provides a starting point for further research and de-
velopment.

45

46

Appendices

Appendix A

Simple sum, chunk size of 1000

thread time speedup efficiency
1 2.98 1 100

2 1.54 1.93 96.66

3 1.07 2.8 93.36

4 0.83 3.61 90.28

5 0.81 3.7 74.02

6 0.9 3.33 55.49

7 0.82 3.63 51.91

8 0.82 3.65 45.64

9 0.82 3.66 40.67

10 0.82 3.66 36.56

11 0.82 3.63 32.99

12 0.82 3.64 30.35

13 0.82 3.64 28.02

14 1 2.97 21.24

15 0.91 3.3 21.97

16 0.84 3.57 22.33

17 0.82 3.62 21.32

18 0.82 3.62 20.11

19 0.83 3.59 18.92

20 0.91 3.29 16.46

21 0.83 3.59 17.07

22 0.83 3.59 16.34

23 0.83 3.61 15.68

24 0.83 3.59 14.94

25 0.84 3.56 14.24

26 0.83 3.6 13.84

27 0.83 3.59 13.28

28 0.83 3.6 12.87

29 0.85 3.53 12.17

30 0.84 3.55 11.84

31 0.83 3.58 11.54

32 0.84 3.57 11.15

33 0.83 3.59 10.88

34 0.83 3.58 10.52

35 0.84 3.57 10.21

36 0.84 3.54 9.84

37 0.83 3.59 9.7

38 0.84 3.56 9.38

39 0.84 3.54 9.07

40 0.84 3.54 8.86

41 0.83 3.58 8.73

42 0.84 3.55 8.45

43 0.84 3.55 8.25

44 0.85 3.52 7.99

45 0.84 3.57 7.93

46 0.85 3.53 7.67

47 0.84 3.54 7.54

48 0.85 3.52 7.33

49 0.85 3.53 7.2

49

50 0.85 3.53 7.05

51 0.84 3.53 6.93

52 0.85 3.51 6.76

53 0.85 3.53 6.66

54 0.85 3.51 6.5

55 0.85 3.51 6.39

56 0.87 3.44 6.14

57 0.85 3.51 6.16

58 0.86 3.48 6

59 0.94 3.18 5.4

60 0.94 3.18 5.3

61 0.85 3.49 5.73

62 0.85 3.5 5.65

63 0.85 3.5 5.55

64 0.85 3.52 5.5

50

Appendix B

Simple sum, chunk size of 10000

thread time speedup efficiency
1 2.9 1 100

2 1.51 1.92 96.18

3 1.04 2.79 93.03

4 0.8 3.61 90.31

5 0.68 4.28 85.58

6 0.64 4.5 74.97

7 0.64 4.53 64.77

8 0.64 4.56 57.03

9 0.64 4.52 50.22

10 0.64 4.54 45.41

11 0.64 4.55 41.34

12 0.64 4.53 37.78

13 0.64 4.56 35.04

14 0.64 4.52 32.28

15 0.64 4.53 30.22

16 0.64 4.51 28.16

17 0.64 4.5 26.46

18 0.64 4.5 24.99

19 0.65 4.46 23.46

20 0.65 4.45 22.25

21 0.65 4.46 21.26

22 0.66 4.42 20.1

23 0.65 4.44 19.29

24 0.66 4.4 18.34

25 0.66 4.39 17.56

26 0.66 4.39 16.88

27 0.67 4.35 16.11

28 0.67 4.36 15.56

29 0.67 4.34 14.95

30 0.67 4.31 14.37

31 0.68 4.27 13.78

32 0.69 4.22 13.18

33 0.69 4.22 12.8

34 0.71 4.06 11.95

35 0.72 4.04 11.54

36 0.71 4.06 11.29

37 0.73 3.97 10.73

38 0.74 3.9 10.26

39 0.75 3.86 9.89

40 0.77 3.79 9.47

41 0.92 3.14 7.65

42 0.87 3.32 7.91

43 0.78 3.71 8.64

44 0.78 3.7 8.41

45 0.78 3.71 8.24

46 0.79 3.65 7.94

47 0.8 3.62 7.7

48 0.88 3.3 6.87

49 0.89 3.25 6.63

51

50 0.89 3.26 6.52

51 0.89 3.25 6.37

52 0.9 3.22 6.2

53 0.9 3.24 6.11

54 0.9 3.23 5.98

55 0.92 3.15 5.73

56 0.9 3.22 5.75

57 0.91 3.19 5.59

58 0.84 3.46 5.96

59 0.92 3.16 5.35

60 0.92 3.14 5.24

61 0.84 3.45 5.65

62 0.85 3.41 5.5

63 0.84 3.44 5.47

64 0.84 3.46 5.41

52

Appendix C

Simple sum, chunk size of 100000

thread time speedup efficiency
1 3.49 1 100.03

2 2.75 1.27 63.39

3 1.44 2.42 80.56

4 1.05 3.32 83.1

5 0.81 4.33 86.6

6 0.82 4.28 71.37

7 0.83 4.22 60.29

8 0.83 4.19 52.43

9 0.92 3.81 42.29

10 0.82 4.24 42.35

11 0.86 4.07 37.02

12 0.85 4.09 34.06

13 0.84 4.16 32.04

14 0.84 4.17 29.82

15 0.84 4.14 27.57

16 0.84 4.15 25.97

17 0.9 3.86 22.73

18 0.86 4.08 22.68

19 0.87 4.03 21.21

20 0.85 4.1 20.51

21 0.86 4.08 19.41

22 0.95 3.66 16.63

23 0.9 3.88 16.86

24 0.87 4.03 16.81

25 0.87 4.02 16.06

26 0.86 4.05 15.59

27 0.9 3.86 14.31

28 0.88 3.97 14.16

29 0.88 3.96 13.64

30 0.89 3.93 13.12

31 0.87 4.01 12.93

32 0.89 3.93 12.3

33 0.9 3.9 11.82

34 0.88 3.97 11.68

35 0.88 3.97 11.36

36 0.89 3.93 10.92

37 0.91 3.83 10.35

38 0.94 3.72 9.8

39 0.91 3.84 9.83

40 0.88 3.95 9.88

41 0.88 3.95 9.64

42 0.88 3.95 9.4

43 0.9 3.86 8.99

44 0.91 3.82 8.69

45 0.91 3.84 8.54

46 0.89 3.91 8.51

47 0.91 3.85 8.2

48 0.91 3.84 8.01

49 0.93 3.77 7.7

53

50 0.91 3.82 7.65

51 0.89 3.92 7.68

52 0.89 3.91 7.52

53 0.9 3.88 7.32

54 0.9 3.88 7.18

55 0.93 3.76 6.84

56 0.93 3.77 6.74

57 0.93 3.75 6.58

58 0.91 3.85 6.63

59 0.93 3.77 6.39

60 0.91 3.83 6.38

61 0.91 3.85 6.31

62 0.93 3.76 6.07

63 0.92 3.79 6.01

64 0.91 3.84 5.99

54

Appendix D

Counting primes, chunk size of 1

thread time speedup efficiency
1 104.3 1 100

2 53.26 1.96 97.92

3 35.92 2.9 96.8

4 27.94 3.73 93.31

5 22.74 4.59 91.72

6 18.96 5.5 91.67

7 17.36 6.01 85.81

8 15.25 6.84 85.47

9 14.16 7.37 81.86

10 12.97 8.04 80.43

11 11.84 8.81 80.12

12 11.52 9.05 75.42

13 10.53 9.91 76.23

14 11.51 9.06 64.73

15 10.31 10.12 67.45

16 10.59 9.85 61.57

17 9.47 11.01 64.77

18 11.96 8.72 48.44

19 11.42 9.14 48.09

20 10.46 9.98 49.88

21 10.66 9.79 46.6

22 10.29 10.13 46.05

23 9.81 10.63 46.24

24 10.24 10.19 42.46

25 11.85 8.8 35.2

26 9.44 11.05 42.48

27 11.65 8.96 33.17

28 11.66 8.94 31.94

29 10.4 10.03 34.58

30 11.56 9.02 30.07

31 10.1 10.33 33.31

32 11.88 8.78 27.43

33 11.15 9.36 28.35

34 11.41 9.14 26.88

35 11.44 9.12 26.05

36 10.99 9.49 26.37

37 11.69 8.92 24.12

38 11.3 9.23 24.29

39 11.83 8.82 22.61

40 11.39 9.16 22.9

41 11.51 9.06 22.11

42 11.69 8.93 21.25

43 11.6 8.99 20.91

44 11.47 9.09 20.66

45 11.51 9.06 20.13

46 11.74 8.89 19.32

47 11.93 8.74 18.6

48 11.52 9.05 18.86

49 11.38 9.16 18.7

55

50 11.82 8.83 17.66

51 11.39 9.16 17.96

52 11.72 8.9 17.12

53 11.92 8.75 16.51

54 11.51 9.06 16.77

55 11.73 8.89 16.16

56 12 8.7 15.53

57 11.95 8.73 15.32

58 11.68 8.93 15.39

59 11.39 9.16 15.52

60 11.81 8.83 14.72

61 11.15 9.35 15.33

62 11.59 9 14.51

63 11.91 8.76 13.91

64 11.94 8.73 13.64

56

Appendix E

Counting primes, chunk size of 10

thread time speedup efficiency
1 101.37 0.99 99.01

2 50.9 1.97 98.59

3 33.99 2.95 98.44

4 25.59 3.92 98.05

5 20.86 4.81 96.26

6 17.33 5.79 96.56

7 14.91 6.73 96.16

8 13.06 7.69 96.1

9 11.69 8.59 95.43

10 10.44 9.61 96.1

11 9.45 10.63 96.6

12 8.75 11.47 95.57

13 8.1 12.4 95.36

14 7.64 13.14 93.88

15 7 14.33 95.55

16 6.58 15.27 95.41

17 6.24 16.09 94.65

18 5.94 16.9 93.88

19 5.6 17.93 94.39

20 5.35 18.76 93.79

21 5.06 19.84 94.48

22 4.88 20.59 93.59

23 4.66 21.53 93.59

24 4.52 22.2 92.48

25 4.37 22.97 91.89

26 4.22 23.79 91.5

27 3.99 25.13 93.08

28 3.91 25.66 91.63

29 3.76 26.73 92.17

30 3.71 27.08 90.28

31 3.57 28.1 90.64

32 3.48 28.88 90.24

33 3.37 29.75 90.15

34 3.29 30.55 89.87

35 3.22 31.16 89.03

36 3.16 31.77 88.26

37 3.01 33.36 90.15

38 2.99 33.52 88.22

39 2.94 34.12 87.48

40 2.84 35.29 88.23

41 2.81 35.73 87.15

42 2.73 36.81 87.64

43 2.68 37.4 86.97

44 2.59 38.78 88.14

45 2.59 38.74 86.09

46 2.49 40.25 87.49

47 2.6 38.65 82.23

48 2.44 41.07 85.56

49 2.47 40.7 83.07

57

50 2.41 41.61 83.23

51 2.37 42.42 83.18

52 2.35 42.75 82.21

53 2.33 43 81.14

54 2.24 44.73 82.83

55 2.29 43.85 79.73

56 2.21 45.42 81.1

57 2.24 44.83 78.65

58 2.16 46.38 79.97

59 2.11 47.64 80.74

60 2.16 46.47 77.45

61 2.11 47.66 78.13

62 2.08 48.28 77.87

63 2.11 47.66 75.65

64 2.01 49.99 78.1

58

Appendix F

Counting primes, chunk size of 100

thread time speedup efficiency
1 100.59 1 100

2 50.58 1.99 99.43

3 33.65 2.99 99.64

4 25.23 3.99 99.68

5 20.23 4.97 99.45

6 17.02 5.91 98.48

7 14.6 6.89 98.46

8 12.88 7.81 97.62

9 11.42 8.81 97.89

10 10.28 9.78 97.83

11 9.39 10.71 97.39

12 8.63 11.66 97.17

13 7.91 12.71 97.79

14 7.42 13.55 96.78

15 6.89 14.6 97.3

16 6.49 15.51 96.92

17 6.11 16.47 96.89

18 5.84 17.22 95.66

19 5.53 18.18 95.69

20 5.37 18.72 93.61

21 5.07 19.85 94.54

22 4.82 20.89 94.96

23 4.62 21.78 94.71

24 4.46 22.57 94.04

25 4.3 23.41 93.64

26 4.15 24.23 93.21

27 4.08 24.67 91.36

28 3.85 26.14 93.36

29 3.74 26.91 92.8

30 3.61 27.83 92.78

31 3.52 28.57 92.16

32 3.4 29.59 92.48

33 3.33 30.22 91.57

34 3.23 31.16 91.65

35 3.13 32.1 91.71

36 3.09 32.54 90.4

37 3.08 32.62 88.16

38 2.93 34.32 90.32

39 2.87 35.1 90

40 2.84 35.48 88.71

41 2.78 36.25 88.41

42 2.69 37.34 88.9

43 2.66 37.86 88.05

44 2.6 38.7 87.96

45 2.55 39.39 87.53

46 2.43 41.43 90.07

47 2.46 40.87 86.97

48 2.37 42.41 88.35

49 2.4 41.95 85.61

59

50 2.31 43.51 87.02

51 2.28 44.2 86.66

52 2.25 44.63 85.82

53 2.22 45.29 85.46

54 2.19 46 85.18

55 2.21 45.48 82.68

56 2.13 47.34 84.53

57 2.33 43.23 75.84

58 2.08 48.46 83.54

59 2.07 48.5 82.21

60 2.02 49.85 83.08

61 1.91 52.58 86.2

62 2.03 49.55 79.92

63 1.99 50.68 80.44

64 1.89 53.11 82.99

60

Appendix G

Glossary of Acronyms

API Application Programming Interface

CPU Central Processing Unit

GIL Global Interpreter Lock

GPU Graphics Processing Unit

HPC High Performance Computing

I/O Input/Output

IPC Inter-Process Communication

LLM Large Language Model

OS Operating System

PEP Python Enhancement Proposal

RAM Random Access Memory

61

62

Appendix H

Glossary of Terms

Concurrency The ability of a system to handle multiple tasks at the same time.

CPython The default and most widely used implementation of the Python programming
language, written in C.

Global Interpreter Lock (GIL) Amutex in CPython that protects access to Python objects,
preventing multiple native threads from executing Python bytecodes at once.

Inter-Process Communication (IPC) A set of techniques for exchanging data between
multiple processes.

Multithreading A concurrent execution of two or more threads within a single process,
sharing the same data space.

Mutex A mutual exclusion object that prevents multiple threads from simultaneously ac-
cessing shared resources.

OpenMP An API that supports multi-platform multithreading programming.

Parallelization The process of executing multiple tasks simultaneously, which can signifi-
cantly improve performance.

PEP 703 A Python Enhancement Proposal that aims to make the Global Interpreter Lock
optional in CPython, enabling true multithreading capabilities.

Shared Memory A memory accessible by multiple processes or threads to exchange infor-
mation.

63

64

Bibliography

[1] “Globalinterpreterlock - python wiki,” May 2024, [Online; accessed 10. May 2024].
[Online]. Available: https://wiki.python.org/moin/GlobalInterpreterLock

[2] “Pep 703 – making the global interpreter lock optional in cpython | peps.python.org,”
Mar. 2024, [Online; accessed 10. May 2024]. [Online]. Available: https://peps.
python.org/pep-0703

[3] “Threading — thread-based parallelism,” May 2024, [Online; accessed 10. May 2024].
[Online]. Available: https://docs.python.org/3/library/threading.html

[4] “Python initialization, finalization, and threads,” May 2024, [Online; accessed
12. May 2024]. [Online]. Available: https://docs.python.org/3/c-api/init.html#
thread-state-and-the-global-interpreter-lock

[5] T. G. Mattson, T. A. Anderson, and G. Georgakoudis, “Pyomp: Multithreaded parallel
programming in python,” Computing in Science & Engineering, vol. 23, no. 6, p. 77–
80, 2021.

[6] S. GUELTON, P. BRUNET, and M. Amini, “Compiling python modules to native parallel
modules using pythran and openmp annotations,” 11 2013.

[7] “Multiprocessing — process-based parallelism,” May 2024, [Online; accessed 10. May
2024]. [Online]. Available: https://docs.python.org/3/library/multiprocessing.html

[8] “Concurrent.futures — launching parallel tasks,” May 2024, [Online; accessed 10. May
2024]. [Online]. Available: https://docs.python.org/3/library/concurrent.futures.
html

[9] “Asyncio — asynchronous i/o,” May 2024, [Online; accessed 10. May 2024]. [Online].
Available: https://docs.python.org/3/library/asyncio.html

65

https://wiki.python.org/moin/GlobalInterpreterLock
https://peps.python.org/pep-0703
https://peps.python.org/pep-0703
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/c-api/init.html#thread-state-and-the-global-interpreter-lock
https://docs.python.org/3/c-api/init.html#thread-state-and-the-global-interpreter-lock
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/asyncio.html

Bibliography

[10] E. Conference, “Keynote: Multithreaded python without the gil - presented by
sam gross,” Nov. 2022, [Online; accessed 10. May 2024]. [Online]. Available:
https://www.youtube.com/watch?v=9OOJcTp8dqE

[11] “Python glossary,” May 2024, [Online; accessed 11. May 2024]. [Online]. Available:
https://docs.python.org/3/glossary.html#term-decorator

[12] “Inspect — inspect live objects,” May 2024, [Online; accessed 12. May 2024]. [Online].
Available: https://docs.python.org/3/library/inspect.html

[13] “Ast — abstract syntax trees,” May 2024, [Online; accessed 12. May 2024]. [Online].
Available: https://docs.python.org/3/library/ast.html

[14] “Python built-in functions,” May 2024, [Online; accessed 12. May 2024]. [Online].
Available: https://docs.python.org/3/library/functions.html#compile

[15] “Python data model,” May 2024, [Online; accessed 12. May 2024]. [Online]. Available:
https://docs.python.org/3/reference/datamodel.html#code-objects

[16] “Python simple statements,” May 2024, [Online; accessed 13. May
2024]. [Online]. Available: https://docs.python.org/3/reference/simple_stmts.html#
grammar-token-python-grammar-nonlocal_stmt

[17] O. A. R. Board, B. de Supinski, and M. Klemm, OpenMP Application

Programming Interface Specification Version 5.2. Independently published,
Nov. 2021. [Online]. Available: https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5-2.pdf

[18] O. A. R. Board, OpenMP 5.2 Reference Guide. Independently pub-
lished, 2021. [Online]. Available: https://www.openmp.org/wp-content/uploads/
OpenMPRefGuide-5.2-Web-2024.pdf

66

https://www.youtube.com/watch?v=9OOJcTp8dqE
https://docs.python.org/3/glossary.html#term-decorator
https://docs.python.org/3/library/inspect.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/functions.html#compile
https://docs.python.org/3/reference/datamodel.html#code-objects
https://docs.python.org/3/reference/simple_stmts.html#grammar-token-python-grammar-nonlocal_stmt
https://docs.python.org/3/reference/simple_stmts.html#grammar-token-python-grammar-nonlocal_stmt
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMPRefGuide-5.2-Web-2024.pdf
https://www.openmp.org/wp-content/uploads/OpenMPRefGuide-5.2-Web-2024.pdf

	Introduction
	Context
	Multithreading In Python
	Parallelization In Python
	Ongoing Work

	Library
	Objectives
	Design
	On-The-Fly Modifications

	Results
	Tools
	Simple Sum
	Counting Primes

	Conclusions
	Simple sum, chunk size of 1000
	Simple sum, chunk size of 10000
	Simple sum, chunk size of 100000
	Counting primes, chunk size of 1
	Counting primes, chunk size of 10
	Counting primes, chunk size of 100
	Glossary of Acronyms
	Glossary of Terms
	Bibliography

