
Rewriting pyc files for fun and
reproducibility

Zbigniew Jędrzejewski-Szmek

zbyszek@in.waw.pl

cba

FOSDEM, Bruxelles/Brussel 2.2.2025

1 / 16

About me

RedHatter working on systemd and various open source things
Fedora contributor working on package build reproducibility
Long time ago some small contributions to CPython

2 / 16

What is build reproducibility?

> A build is reproducible if given the same source code, build
environment and build instructions, any party can recreate
bit-by-bit identical copies of all specified artifacts.

– reproducible-builds.org

Two angles of motiviation:
Security (independent verification of suply chain security)
Quality (issues in hardware, build systems, packaging,
software)

3 / 16

https://reproducible-builds.org/docs/definition/

How do we achieve build reproducibility?

packages are built in a container with no network access
dependencies are installed as packages
build process must be determininistic
operation independent of the environment (e.g. time clamped
to $SOURCE_DATE_EPOCH)

To solve issues that cannot be resolved by changing individual
packages or tools, we apply a post-build cleanup…

4 / 16

How do we achieve build reproducibility?
post-build cleanups

Debian has strip-nondeterminism
Fedora now has add-determinism

add-determinism runs after the install phase of the package build
+ /usr/bin/add-determinism --brp -j2 /builddir/build/BUILD/python-tables-3.10.1-build/BUILDROOT
/…/BUILDROOT/…/tables/misc/__pycache__/__init__.cpython-313.pyc:

rewriting with normalized contents
/…/BUILDROOT/…/tables/misc/__pycache__/enum.cpython-313.pyc:

rewriting with normalized contents
...
Scanned 36 directories and 362 files,

processed 94 inodes,
94 modified (30 replaced + 64 rewritten),
0 unsupported format, 0 errors

ownership and mtimes in *.zip, *.jar, and *.a archives
timestamps in javadoc *.html
python *.pyc files

5 / 16

https://packages.debian.org/sid/dh-strip-nondeterminism
https://github.com/keszybz/add-determinism

The intro is finally over, phew!

6 / 16

pyc files
i.e. the thing this talk is supposed to be about…

.py source file → .pyc cached bytecode

CPython will (attempt to) write .pyc files every time
it loads a .py file
writing may fail
Fedora packages include .pyc files for speed and reliability

7 / 16

pyc contents
basic objects

[VERSION1 VERSION2 MAGIC1 MAGIC2 4–12 byte header]
[object1] [object2] … [object…]

Object can be:
an 32-bit integer: [’i’ BYTE4 BYTE3 BYTE2 BYTE1]
an 64-bit float: [’g’ BYTE8 BYTE7 … BYTE2 BYTE1]
an 2×64-bit complex: [’y’ REAL8 … REAL1 IMAG8 … IMAG1]
a Python integer: [’l’ SIZE4 SIZE3 SIZE2 SIZE1

DIGIT1_4 DIGIT1_3 DIGIT1_2 DIGIT1_1
… DIGITn_1]

normal string: [’s’/’t’/’u’/’a’/’A’ SIZE4 … SIZE1 CHAR1 ... CHARn]
short ASCII string: [’z’/’Z’ SIZE CHAR1 … CHARn]
special Python stuff: [’N’/’F’/’T’/’.’/’S’]

8 / 16

pyc contents
complex objects

list: [’[’ SIZE4 … SIZE1 [object1] … [objectn]]
tuple: [’(’ SIZE4 … SIZE1 [object1] … [objectn]]

[’)’ SIZE [object1] … [objectn]]
sets: [’<’/’>’ SIZE4 … SIZE1 [object1] … [objectn]]
dicts: [’{’ [key] [value] ...[key] [value] ’0’]

New in Python 3.14 — slice objects: [’:’ [start] [stop] [step]]

9 / 16

pyc contents
very complex objects

code object: [’c’ [ARGCOUNT] [POSONLYARGCOUNT]
[KWONLYARGCOUNT] … [FLAGS] [code] [consts] [names] …
[filename] [name] [qualname] …]

the whole pyc file:
[VERSION1 VERSION2 MAGIC1 MAGIC2 4–12 byte header]
[object1] [object2] … [object…][code][code [string1] [string2] ... [list
...]]

10 / 16

pyc contents
reference objects

reference: [’r’ BYTE4 … BYTE1]

[HEADER] [object1] [object2] [object3] [object4] …
...
[REF 0] ... [object] ... [REF 1]

11 / 16

12 / 16

Irreproducibilities observed

Only objects with can be referenced
Objects may be flagged without being referenced
→ “unused flags”
Not all objects have to replaced by references
Many different equivalent serializations

Solution:

rewrite the object stream with minimal number of flags and
maximal number of references

13 / 16

14 / 16

Questions & further steps

CPython could be improved to … maximize references and
minimize flags
Is it OK to reference mutable objects?
Can we change ’s’ → ’z’? (3 bytes less, more references)
Can we change ’A’/’Z’ → ’a/’z’? (more references)
Can we change ’l’ → ’i’? (4 bytes less, simpler processing,
more references)
Can we change ’[’ ←→ ’(’/’)’? (more references, less bytes)
add-determinism -p is useful, but no bytecode decoder
diffoscope should use marshalparser -p/
marshal-parser -p/add-determinism -p

15 / 16

Links and references

For more info:
reproducible-builds.org
Fedora ReproduciblePackageBuilds Change
Flock 2024 Reproducible builds in Fedora talk

Tools:
github.com/keszybz/add-determinism
packages.debian.org/sid/dh-strip-nondeterminism
github.com/fedora-python/marshalparser
crates.io/crates/marshal-parser

16 / 16

https://reproducible-builds.org
https://fedoraproject.org/wiki/Changes/ReproduciblePackageBuilds
https://www.youtube.com/watch?v=nJHh-VJnGt8
https://github.com/keszybz/add-determinism
https://packages.debian.org/sid/dh-strip-nondeterminism
https://github.com/fedora-python/marshalparser
https://crates.io/crates/marshal-parser

