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What is H-hat (    ) ?

• A high-level abstraction quantum programming language

• user-facing layer of the quantum stack

• data-oriented approach

• closer to what programmers currently are used to
QASM-like language

quantum device/emulator

H-hat

user
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Quantum type system

• Defines quantum data:

• Composes quantum data structure for quantum data types

• quantum boolean (@bool), quantum integer (@u2, @u4), etc.

• custom quantum data types with structs, enums, etc. ex:

@0 @1 @"h" @3.14 @true

type @syncd_bool_t { @source:@bool @target:@bool }

type @teleport_bool_t { 
    @data:@bool 
    @remote:@conn_teleport_bool_t 
}
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Quantum type system
Quantum type check

• check the number of indexes (qubits) for the quantum type recursively

Quantum variable

• appends quantum and classical instructions inside the variable stack
@q:@bool = @redim(@false)

@q<@bool>.data = ( 
@bool::@ALLOC_INDEX, 
@bool::@REDIMENSIONALIZE(@bool::@FALSE) 
)
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• cast:

1. compiles quantum instructions into QASM-like language, ex:

cast(u32 @redim(@3<@u2>))

OPENQASM 2.0; 
include "qelib1.inc"; 
qreg q[2]; 
creg c[2]; 
x q[0]; 
x q[1]; 
h q[0]; 
h q[1]; 
measure q[0] -> c[0]; 
measure q[1] -> c[1];
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2. executes them on emulator/QPU and retrieves measurement (dict):

cast(u32 @redim(@3<@u2>))

{"00": 500, "01": 500, "10": 500, "11": 500}
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• cast:


3. transforms the result according to a protocol (raw, weighted average, 
highest or lowest value):

cast(u32 @redim(@3<@u2>))

raw => {"00": 450, "01": 510, "10": 550, "11": 490} 

weighted_average (1.54) => "10" 

highest (550) => "10" 

lowest (450) => "00" 
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• cast:


4. casts it to the chosen classical type:

cast(u32 @redim(@3<@u2>))

raw, dict => not compatible with u32 

weighted_average, "10" => 2<u32> 

highest, "10" => 2<u32> 

lowest, "00" => 0<u32> 
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Quantum type system

There are many other points not covered here, such as

1. Index manager

2. Quantum functions conversion to quantum instructions

3. Quantum instructions execution order

4. ...

Reach me out to know more about the project!





github.com/hhat-lang

http://github.com/hhat-lang

