Using Valgrind for file descriptor tracking

Alexandra Hajkova

February 01, 2025

Red Hat

Alexandra Hajkova February 01, 2025 1/19

What are we going to talk about?
@ Valgrind error manager
@ Actions to take on errors - integration with GDB
@ File descriptors as resources
@ Detecting and reporting bad file descriptor usage

Alexandra Hajkova February 01, 2025 2/19

@ an instrumentation framework for building dynamic analysis tools
@ detects various memory management and threading bugs

@ decompiles, instruments and recompiles your code

@ intercepts syscalls, signals, threading, auxv, /proc access

Memcheck

most used tool, default
detects unaccessible or undefined memory usage

Cachegrind - cache profiler

Massif - heap profiler

Helgrind - thread debugger

None - did nothing, now does fds tracking

©

© 6 6 o

February 01, 2025 3/19

Valgrind Error Manager
Tools use it to

@ create events (add backtraces)
@ report events (that are errors)

» human readable
» machine readable (xml)

@ suppress specific issues
@ integration with other tools like GDB

Alexandra Hajkova February 01, 2025 4/19

GDB Trap on errors

gdb ./bad

(gdb) set remote exec-file ./bad

(gdb) set sysroot /~

(gdb) target extended-remote | vgdb --multi --vargs -gq
Remote debugging using vgdb --multi --vargs -q

(gdb) start

Temporary breakpoint 1 at 0x4011dl: file bad.c, line 27.
Starting program: bad

relaying data between gdb and process 3457526

(gdb) c
Continuing.

==3457526 Conditional jump or move depends on uninitialised value(s)
==3457526== at 0x4011F1l: main (bad.c:30)

==3457526==

Program received signal SIGTRAP, Trace/breakpoint trap.
0x00000000004011f1 in main () at bad.c:30

30 if (s.flagl || s.flag2)
y
An article
@ Valgrind and GDB in close cooperation
https://www.redhat.com/en/blog/valgrind-and-gdb-close-cooperation
y

Alexandra Hajkova February 01, 2025 5/19

file descriptors are like other resources
@ can be created and destroyed
@ can be used while not destroyed
@ Valgrind already tracks all system calls (where these events occur)

v

file descriptors are like blocks of memory
@ open/creat are like malloc/calloc
@ read/write to/from memory block/file descriptor
@ close is like free, must happen (only) once
@ Valgrind needs to hide its own memory from the application
@ Valgrind uses file descriptors itself, must adjust RLIMIT_NOFILE

V.

Alexandra Hajkova February 01, 2025 6/19

o file descriptor represents an (open) resource
open file, network connection, timer, signal, process, etc.
o file descriptors are either

inherited at program startup (stdin/stdout/stderr), found through
/proc/self/fds

created by syscalls creat , open, socket, accept,
dup (23], ...
@ destroyed by
syscall close
syscall close_range
@ Record for all events

where (execution context)
name/file/socket description (if possible)

February 01, 2025 7/19

File descriptor double close
@ record event where the file descriptor was originally created
@ show error where the file descriptor was used/closed again

Example

==3521944== File descriptor 3: /dev/pts/0 is already closed
==3521944== at 0x497F804: close (close.c:27)
==3521944== by 0x401322: main (bad.c:51)

==3521944== Previously closed

==3521944== at 0x497F804: close (close.c:27)

==3521944== by 0x4012CF: main (bad.c:44)

==3521944== Originally opened

==3521944== at 0x497FA4B: dup (syscall-template.S:120
==3521944== by 0x401208: main (bad.c:29

Alexandra Hajkova February 01, 2025 8/19

File descriptor use after close
@ record event where it was originally destroyed

Code

close (fd);
write (fd, string, 3);

Example

3696196== File descriptor 3: /dev/pts/10 is already closed
3696196== at 0x498BF74: close (close.c:27)

by 0x401356: main (bad.c:54)
Previously closed

at 0x498BF74: close (close.c:27)

by 0x4012D7: main (bad.c:45)
Originally opened

at 0x498C1BB: dup (syscall-template.S:120)
==3696196== by 0x401210: main (bad.c:30)

Alexandra Hajkova Using Valgrind for file descriptor tracking February 01, 2025

9/19

File descriptor bad usage

@ program uses invalid file descriptor
» too bigorfd<0

Code

write (12345, string, 3);

Command

./vg-in-place —--track-fds=yes ./bad

Example: fd is insanely big

==3695625== Invalid file descriptor 12345
==3695625== at 0x4991984: write (write.c:26)
==3695625== by 0x4012ED: main (bad.c:46)

Alexandra Hajkova February 01, 2025 10/19

File descriptor was never created
@ program uses a file descriptor it never created (or inherited)

Code

/* Never created fd 7. */
write (7, string, 4);

==714874== File descriptor 7 was never created
==714874== at 0x497DE84: write (write.c:26)
==714874== by 0x40114B: main (in /home/ahajkova/valgrin

v

Alexandra Hajkova February 01, 2025

11/19

@ return highest available fd

@ POSIX requires that new file descriptors are always the lowest
possible ones
@ will prevent bugs caused by that the POSIX behaviour

@ strict mode: fds 0,1,2 would be exempt

when 0, 1 or 2 are "free" (unallocated) then they would be picked as
new fd

int oldfd = open ("FOO.txt", O_RDWR|O_CREAT, S_IRUSR | S_TW

/*... do something with oldfd .../

close (oldfd);

/x Lets open another file... x/

int newfd = open ("BAD.txt", O_RDWR|O_CREAT, S_IRUSR | S_TIW
/* ... oops we are using the wrong fd (but same number...)

dprintf (oldfd, "some new text\n");

February 01, 2025 12/19

file descriptor leaks
@ like memcheck memory leaks

@ Do inherited stdin/out/err file descriptors count?
» ——track-fds=all vS —--track-fds=yes

——track-fds=yes example

==3696499== FILE DESCRIPTORS: 4 open (3 std) at exit.

==3696499== Open file descriptor 4: /dev/pts/10

==3696499== at 0x498C1BB: dup (syscall-template.S:120)

==3696499== Dby 0x40121D: main (bad.c:31)

Alexandra Hajkova

February 01, 2025

13/19

——track-fds=all example

==3696688== FILE DESCRIPTORS: 4 open (3 std) at exit.
Open file descriptor 4: /dev/pts/10
at 0x498C1BB: dup (syscall-template.S:120

by 0x40121D: main (bad.c:31)

==3696688==

69668 Open file descriptor 2: /dev/pts/10
==3696688== <inherited from parent>
==3696688==

Open file descriptor 1: /dev/pts/10
<inherited from parent>

Open file descriptor 0: /dev/pts/10
==3696688== <inherited from parent>

ng Valgrind for file descript { February 01, 2025

14/19

The curious case of close_range ()

@ a bit of a hammer
» better than
for (int i=3; i < 999999; i++) close (1i);
@ better to use CLOEXEC flag
» the close-on-exec flag for the new file descriptor
» essential in some multithreaded programs

o flag "double close" only if closing specific range

close_range ()

@ Introduced in Linux 5.9 (released 2020), glibc 2.34

@ BSDs have closefrom, glibc implements that as a wrapper
close_range (lowfd, ~0U, 0);

Alexandra Hajkova February 01, 2025

15/19

GDB inspecting file descriptors example

gdb -ex ’set remote exec-file ./bad’ -ex ’set sysroot /'’ ./bad
(gdb) target extended-remote | vgdb --multi --vargs —-g —--track-fds=yes
(gdb) monitor v.info open_fds

==3698979== FILE DESCRIPTORS: 5 open (3 std) .
Open AF_UNIX socket 4: <unknown>

==3698979== at 0x498C1BB: dup (syscall-template.S:120)
==3698979== by 0x40121D: main (bad.c:31)

==3698979==

Open AF_UNIX socket 3: <unknown>

==3698979== at 0x498C1BB: dup (syscall-template.S:120)
==3698979== by 0x401210: main (bad.c:30)

Valgrind can act as a gdbserver
@ vgdb intermediary between Valgrind and GDB
@ valgrind -gq -vgdb-error=0 ./bad
@ (gdb) target remote | vgdb -pid=3781640

@ How to debug memory errors with Valgrind and GDB
» https://developers.redhat.com/articles/2021/11/

Alexandra Hajkova February 01, 2025

16/19

https://developers.redhat.com/articles/2021/11/01/debug-memory-errors-valgrind-and-gdb#
https://developers.redhat.com/articles/2021/11/01/debug-memory-errors-valgrind-and-gdb#

Work in progress

@ —-track-fds=bad work in progress

@ when you are only interested about misusing fds
@ do not warn about the fd leaks

@ should it be on by the default?

Alexandra Hajkova February 01, 2025 17/19

Conclusion
o file descriptors is the resource somewhat similar to memory
@ ——track-fds=yes will warn you about misusing fds
@ --modify-fds work in progress
» non POSIX behaviour
—-—track-fds=bad work in progress
it is useful to use Valgrind together with GDB

e ©

Alexandra Hajkova February 01, 2025 18/19

Thank you for your attention!
@ Questions?

My articles about Valgrind and GDB

@ How to track file descriptors with Valgrind
https://developers.redhat.com/articles/2024/11/07/
track-file—-descriptors—-valgrind

@ Valgrind and GDB in close cooperation https://www.redhat .com/
en/blog/valgrind-and-gdb-close-cooperation

@ 7 pro tips for using the GDB step command
https://opensource.com/article/22/12/gdb-step—command

@ How to debug memory errors with Valgrind and GDB
https://developers.redhat.com/articles/2021/11/01/
debug-memory-errors-valgrind-and-gdb#

@ Using Valgrind’s —trace-flags option
https://developers.redhat.com/articles/2021/06/15/
debugging-valgrind-adding-fused-multiply-add-support—a
p=878147

o

Alexandra Hajkova February 01, 2025 19/19

L C

https://developers.redhat.com/articles/2024/11/07/track-file-descriptors-valgrind
https://developers.redhat.com/articles/2024/11/07/track-file-descriptors-valgrind
https://www.redhat.com/en/blog/valgrind-and-gdb-close-cooperation
https://www.redhat.com/en/blog/valgrind-and-gdb-close-cooperation
https://opensource.com/article/22/12/gdb-step-command
https://developers.redhat.com/articles/2021/11/01/debug-memory-errors-valgrind-and-gdb#
https://developers.redhat.com/articles/2021/11/01/debug-memory-errors-valgrind-and-gdb#
https://developers.redhat.com/articles/2021/06/15/debugging-valgrind-adding-fused-multiply-add-support-aarch64-processor?p=878147
https://developers.redhat.com/articles/2021/06/15/debugging-valgrind-adding-fused-multiply-add-support-aarch64-processor?p=878147
https://developers.redhat.com/articles/2021/06/15/debugging-valgrind-adding-fused-multiply-add-support-aarch64-processor?p=878147

