
Using Valgrind for file descriptor tracking

Alexandra Hájková

February 01, 2025

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 1 / 19

What are we going to talk about?
Valgrind error manager
Actions to take on errors - integration with GDB
File descriptors as resources
Detecting and reporting bad file descriptor usage

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 2 / 19

Quick recap - What is valgrind?
an instrumentation framework for building dynamic analysis tools
detects various memory management and threading bugs
decompiles, instruments and recompiles your code
intercepts syscalls, signals, threading, auxv, /proc access

Tools
Memcheck

▶ most used tool, default
▶ detects unaccessible or undefined memory usage

Cachegrind - cache profiler
Massif - heap profiler
Helgrind - thread debugger
None - did nothing, now does fds tracking

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 3 / 19

Valgrind Error Manager
Tools use it to

create events (add backtraces)
report events (that are errors)

▶ human readable
▶ machine readable (xml)

suppress specific issues
integration with other tools like GDB

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 4 / 19

GDB Trap on errors

gdb ./bad
(gdb) set remote exec-file ./bad
(gdb) set sysroot /~
(gdb) target extended-remote | vgdb --multi --vargs -q
Remote debugging using | vgdb --multi --vargs -q
(gdb) start
Temporary breakpoint 1 at 0x4011d1: file bad.c, line 27.
Starting program: bad
relaying data between gdb and process 3457526

(gdb) c
Continuing.
==3457526== Conditional jump or move depends on uninitialised value(s)
==3457526== at 0x4011F1: main (bad.c:30)
==3457526==

Program received signal SIGTRAP, Trace/breakpoint trap.
0x00000000004011f1 in main () at bad.c:30
30 if (s.flag1 || s.flag2)

An article
Valgrind and GDB in close cooperation
https://www.redhat.com/en/blog/valgrind-and-gdb-close-cooperation

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 5 / 19

file descriptors are like other resources
can be created and destroyed
can be used while not destroyed
Valgrind already tracks all system calls (where these events occur)

file descriptors are like blocks of memory
open/creat are like malloc/calloc
read/write to/from memory block/file descriptor
close is like free, must happen (only) once
Valgrind needs to hide its own memory from the application
Valgrind uses file descriptors itself, must adjust RLIMIT_NOFILE

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 6 / 19

--track-fds=yes

file descriptor represents an (open) resource
▶ open file, network connection, timer, signal, process, etc.

file descriptors are either
▶ inherited at program startup (stdin/stdout/stderr), found through

/proc/self/fds

▶ created by syscalls creat , open , socket , accept ,
dup[23] , ...

destroyed by
▶ syscall close
▶ syscall close_range

Record for all events
▶ where (execution context)
▶ name/file/socket description (if possible)

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 7 / 19

File descriptor double close
record event where the file descriptor was originally created
show error where the file descriptor was used/closed again

Example

==3521944== File descriptor 3: /dev/pts/0 is already closed
==3521944== at 0x497F804: close (close.c:27)
==3521944== by 0x401322: main (bad.c:51)
==3521944== Previously closed
==3521944== at 0x497F804: close (close.c:27)
==3521944== by 0x4012CF: main (bad.c:44)
==3521944== Originally opened
==3521944== at 0x497FA4B: dup (syscall-template.S:120)
==3521944== by 0x401208: main (bad.c:29)

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 8 / 19

File descriptor use after close
record event where it was originally destroyed

Code

close(fd);
write(fd, string, 3);

Example

==3696196== File descriptor 3: /dev/pts/10 is already closed
==3696196== at 0x498BF74: close (close.c:27)
==3696196== by 0x401356: main (bad.c:54)
==3696196== Previously closed
==3696196== at 0x498BF74: close (close.c:27)
==3696196== by 0x4012D7: main (bad.c:45)
==3696196== Originally opened
==3696196== at 0x498C1BB: dup (syscall-template.S:120)
==3696196== by 0x401210: main (bad.c:30)

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 9 / 19

File descriptor bad usage
program uses invalid file descriptor

▶ too big or fd < 0

Code

write(12345, string, 3);

Command

./vg-in-place --track-fds=yes ./bad

Example: fd is insanely big

==3695625== Invalid file descriptor 12345
==3695625== at 0x4991984: write (write.c:26)
==3695625== by 0x4012ED: main (bad.c:46)

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 10 / 19

File descriptor was never created
program uses a file descriptor it never created (or inherited)

Code

/* Never created fd 7. */
write(7, string, 4);

==714874== File descriptor 7 was never created
==714874== at 0x497DE84: write (write.c:26)
==714874== by 0x40114B: main (in /home/ahajkova/valgrind/use)

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 11 / 19

New --modify-fds=[no|high|strict] option

return highest available fd
POSIX requires that new file descriptors are always the lowest
possible ones
will prevent bugs caused by that the POSIX behaviour
strict mode: fds 0,1,2 would be exempt
▶ when 0, 1 or 2 are "free" (unallocated) then they would be picked as

new fd

int oldfd = open ("FOO.txt", O_RDWR|O_CREAT, S_IRUSR | S_IWUSR);
/*... do something with oldfd ...*/
close (oldfd);
/* Lets open another file... */
int newfd = open ("BAD.txt", O_RDWR|O_CREAT, S_IRUSR | S_IWUSR);
/* ... oops we are using the wrong fd (but same number...) */
dprintf (oldfd, "some new text\n");

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 12 / 19

file descriptor leaks
like memcheck memory leaks
Do inherited stdin/out/err file descriptors count?

▶ --track-fds=all vs --track-fds=yes

--track-fds=yes example

==3696499== FILE DESCRIPTORS: 4 open (3 std) at exit.
==3696499== Open file descriptor 4: /dev/pts/10
==3696499== at 0x498C1BB: dup (syscall-template.S:120)
==3696499== by 0x40121D: main (bad.c:31)

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 13 / 19

--track-fds=all example

==3696688== FILE DESCRIPTORS: 4 open (3 std) at exit.
==3696688== Open file descriptor 4: /dev/pts/10
==3696688== at 0x498C1BB: dup (syscall-template.S:120)
==3696688== by 0x40121D: main (bad.c:31)
==3696688==
==3696688== Open file descriptor 2: /dev/pts/10
==3696688== <inherited from parent>
==3696688==
==3696688== Open file descriptor 1: /dev/pts/10
==3696688== <inherited from parent>
==3696688==
==3696688== Open file descriptor 0: /dev/pts/10
==3696688== <inherited from parent>

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 14 / 19

The curious case of close_range()

a bit of a hammer
▶ better than

for (int i=3; i < 999999; i++) close (i);

better to use CLOEXEC flag
▶ the close-on-exec flag for the new file descriptor
▶ essential in some multithreaded programs

flag "double close" only if closing specific range

close_range()

Introduced in Linux 5.9 (released 2020), glibc 2.34
BSDs have closefrom , glibc implements that as a wrapper
close_range (lowfd, ~0U, 0);

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 15 / 19

GDB inspecting file descriptors example

gdb -ex ’set remote exec-file ./bad’ -ex ’set sysroot /’ ./bad

(gdb) target extended-remote | vgdb --multi --vargs -q --track-fds=yes

(gdb) monitor v.info open_fds
==3698979== FILE DESCRIPTORS: 5 open (3 std) .
Open AF_UNIX socket 4: <unknown>
==3698979== at 0x498C1BB: dup (syscall-template.S:120)
==3698979== by 0x40121D: main (bad.c:31)
==3698979==
Open AF_UNIX socket 3: <unknown>
==3698979== at 0x498C1BB: dup (syscall-template.S:120)
==3698979== by 0x401210: main (bad.c:30)

Valgrind can act as a gdbserver

vgdb intermediary between Valgrind and GDB

valgrind -q -vgdb-error=0 ./bad

(gdb) target remote | vgdb -pid=3781640

How to debug memory errors with Valgrind and GDB
▶ https://developers.redhat.com/articles/2021/11/
01/debug-memory-errors-valgrind-and-gdb#Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 16 / 19

https://developers.redhat.com/articles/2021/11/01/debug-memory-errors-valgrind-and-gdb#
https://developers.redhat.com/articles/2021/11/01/debug-memory-errors-valgrind-and-gdb#

Work in progress

--track-fds=bad work in progress
when you are only interested about misusing fds
do not warn about the fd leaks
should it be on by the default?

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 17 / 19

Conclusion
file descriptors is the resource somewhat similar to memory
--track-fds=yes will warn you about misusing fds

--modify-fds work in progress
▶ non POSIX behaviour

--track-fds=bad work in progress
it is useful to use Valgrind together with GDB

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 18 / 19

Thank you for your attention!
Questions?

My articles about Valgrind and GDB
How to track file descriptors with Valgrind
https://developers.redhat.com/articles/2024/11/07/
track-file-descriptors-valgrind

Valgrind and GDB in close cooperation https://www.redhat.com/
en/blog/valgrind-and-gdb-close-cooperation

7 pro tips for using the GDB step command
https://opensource.com/article/22/12/gdb-step-command

How to debug memory errors with Valgrind and GDB
https://developers.redhat.com/articles/2021/11/01/
debug-memory-errors-valgrind-and-gdb#

Using Valgrind’s –trace-flags option
https://developers.redhat.com/articles/2021/06/15/
debugging-valgrind-adding-fused-multiply-add-support-aarch64-processor?
p=878147

Alexandra Hájková Using Valgrind for file descriptor tracking February 01, 2025 19 / 19

https://developers.redhat.com/articles/2024/11/07/track-file-descriptors-valgrind
https://developers.redhat.com/articles/2024/11/07/track-file-descriptors-valgrind
https://www.redhat.com/en/blog/valgrind-and-gdb-close-cooperation
https://www.redhat.com/en/blog/valgrind-and-gdb-close-cooperation
https://opensource.com/article/22/12/gdb-step-command
https://developers.redhat.com/articles/2021/11/01/debug-memory-errors-valgrind-and-gdb#
https://developers.redhat.com/articles/2021/11/01/debug-memory-errors-valgrind-and-gdb#
https://developers.redhat.com/articles/2021/06/15/debugging-valgrind-adding-fused-multiply-add-support-aarch64-processor?p=878147
https://developers.redhat.com/articles/2021/06/15/debugging-valgrind-adding-fused-multiply-add-support-aarch64-processor?p=878147
https://developers.redhat.com/articles/2021/06/15/debugging-valgrind-adding-fused-multiply-add-support-aarch64-processor?p=878147

