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Agenda

▸ Background on KubeVirt

▸ The Observability Challenge

▸ Our Approach: Modularizing Observability

▸ Demo

▸ Lessons Learned & Best Practices

What we’ll 
discuss today
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▸ Open source (Apache-2.0 license) CNCF project in incubation state

▸ 5.8k GitHub stars, 300+ contributors, 1k+ forks, 10k+ PRs

▸ Vendored and adopted by numerous organizations like Red Hat, 

Microsoft, Cloudflare, NVIDIA, arm, etc.

Kubernetes Virtualization API
and runtime in order to define and manage virtual machines.
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▸ Increased project maturity and complex business requirements, 

alongside growing number of end-users and vendors

▸ Requests for new observability features and signals

▸ Observability became a “first-class“ concern

▸ Formation of a specialized observability team

Need for a Dedicated Team
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▸ Each team or developer added Prometheus metrics in their own style 

across different codebases

▸ High cognitive load to maintain an internal mental model of metrics

▸ Business logic intertwined with observability logic

▸ Inconsistencies in naming conventions, labels, and best practices

▸ Hard to add new features since they are independently created in 

many different places

The “wild west” approach
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▸ github.com/kubevirt/kubevirt

▸ github.com/kubevirt/hyperconverged-cluster-operator 

▸ github.com/kubevirt/ssp-operator

▸ github.com/kubevirt/cluster-network-addons-operator

▸ github.com/kubevirt/containerized-data-importer

▸ github.com/kubevirt/hostpath-provisioner-operator

▸ github.com/kubevirt/hostpath-provisioner

Repositories Managed

https://github.com/kubevirt/kubevirt
http://github.com/kubevirt/hyperconverged-cluster-operator
https://github.com/kubevirt/ssp-operator
https://github.com/kubevirt/cluster-network-addons-operator
https://github.com/kubevirt/containerized-data-importer
https://github.com/kubevirt/hostpath-provisioner-operator
https://github.com/kubevirt/hostpath-provisioner
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proposal: Monitoring code refactor
https://github.com/kubevirt/community/pull/219 

https://github.com/kubevirt/community/pull/219
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▸ Decouple monitoring logic from business logic

▸ Encapsulate the monitoring best-practices and the common patterns 

into a library and have it as a dependency for all KubeVirt components

▸ Keep monitoring code and utilities easy to maintain and evolve

▸ Have a structure and tools to accurately and easily generate 

monitoring documentation, lint metrics and alerts, define 

allow/deny/opt-in lists and other features without having to change 

the code in multiple places

Goals
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Strict Interface and Dependency Model
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Refactor monitoring metrics 
https://github.com/kubevirt/kubevirt/pull/10982 

https://github.com/kubevirt/kubevirt/pull/10982
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Enforced Validations
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Easier and more complete unit-tests
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Clearly bounded ownership
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▸ Overhead creating the package

▸ Huge and complex refactor work across all the repositories

▸ Educating developers

▸ Golang linter designed to ensure that in Kubernetes operator 

projects, monitoring-related practices are implemented within the 

pkg/monitoring directory using operator-observability

Challenges in Transition



Demo

27



Lessons Learned &
Best Practices

28



Lessons Learned & Best Practices

29

▸ Reduce Technical Debt Early

▸ Encourage a Dedicated Observability Mindset

▸ Library-Based Approach

▸ Continuous Iteration
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Thank you


