
Reducing observability 
cognitive load in KubeVirt

João Vilaça

Software Engineer at Red Hat

1



2

Agenda

▸ Background on KubeVirt

▸ The Observability Challenge

▸ Our Approach: Modularizing Observability

▸ Demo

▸ Lessons Learned & Best Practices

What we’ll 
discuss today



Background on KubeVirt

3



Background on KubeVirt

4

▸ Open source (Apache-2.0 license) CNCF project in incubation state

▸ 5.8k GitHub stars, 300+ contributors, 1k+ forks, 10k+ PRs

▸ Vendored and adopted by numerous organizations like Red Hat, 

Microsoft, Cloudflare, NVIDIA, arm, etc.

Kubernetes Virtualization API
and runtime in order to define and manage virtual machines.



Background on KubeVirt

5



Background on KubeVirt

6



The Observability 
Challenge

7



The Observability Challenge

8

▸ Increased project maturity and complex business requirements, 

alongside growing number of end-users and vendors

▸ Requests for new observability features and signals

▸ Observability became a “first-class“ concern

▸ Formation of a specialized observability team

Need for a Dedicated Team



The Observability Challenge

9

▸ Each team or developer added Prometheus metrics in their own style 

across different codebases

▸ High cognitive load to maintain an internal mental model of metrics

▸ Business logic intertwined with observability logic

▸ Inconsistencies in naming conventions, labels, and best practices

▸ Hard to add new features since they are independently created in 

many different places

The “wild west” approach



Our Approach: 
Modularizing Observability

10



Our Approach: Modularizing Observability

11

▸ github.com/kubevirt/kubevirt

▸ github.com/kubevirt/hyperconverged-cluster-operator 

▸ github.com/kubevirt/ssp-operator

▸ github.com/kubevirt/cluster-network-addons-operator

▸ github.com/kubevirt/containerized-data-importer

▸ github.com/kubevirt/hostpath-provisioner-operator

▸ github.com/kubevirt/hostpath-provisioner

Repositories Managed

https://github.com/kubevirt/kubevirt
http://github.com/kubevirt/hyperconverged-cluster-operator
https://github.com/kubevirt/ssp-operator
https://github.com/kubevirt/cluster-network-addons-operator
https://github.com/kubevirt/containerized-data-importer
https://github.com/kubevirt/hostpath-provisioner-operator
https://github.com/kubevirt/hostpath-provisioner


Our Approach: Modularizing Observability

12

proposal: Monitoring code refactor
https://github.com/kubevirt/community/pull/219 

https://github.com/kubevirt/community/pull/219


Our Approach: Modularizing Observability

13

▸ Decouple monitoring logic from business logic

▸ Encapsulate the monitoring best-practices and the common patterns 

into a library and have it as a dependency for all KubeVirt components

▸ Keep monitoring code and utilities easy to maintain and evolve

▸ Have a structure and tools to accurately and easily generate 

monitoring documentation, lint metrics and alerts, define 

allow/deny/opt-in lists and other features without having to change 

the code in multiple places

Goals



Our Approach: Modularizing Observability

14

Strict Interface and Dependency Model



15



16



Our Approach: Modularizing Observability

17



Our Approach: Modularizing Observability

18

Refactor monitoring metrics 
https://github.com/kubevirt/kubevirt/pull/10982 

https://github.com/kubevirt/kubevirt/pull/10982


Our Approach: Modularizing Observability

19



20



Our Approach: Modularizing Observability

21

Enforced Validations



22



Our Approach: Modularizing Observability

23

Easier and more complete unit-tests



Our Approach: Modularizing Observability

24



Our Approach: Modularizing Observability

25

Clearly bounded ownership



Our Approach: Modularizing Observability

26

▸ Overhead creating the package

▸ Huge and complex refactor work across all the repositories

▸ Educating developers

▸ Golang linter designed to ensure that in Kubernetes operator 

projects, monitoring-related practices are implemented within the 

pkg/monitoring directory using operator-observability

Challenges in Transition



Demo

27



Lessons Learned &
Best Practices

28



Lessons Learned & Best Practices

29

▸ Reduce Technical Debt Early

▸ Encourage a Dedicated Observability Mindset

▸ Library-Based Approach

▸ Continuous Iteration



linkedin.com/in/machadovilaca

x.com/machadovilaca

30

Thank you


