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What is Mattermost?
Stats and good practices



Mattermost
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● Communication platform
● Open Source
● On-prem or Cloud
● Design for mission critical systems
● Focus on stability and security
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Why a distributed database?
The mattermost use case



Why a distributed database?
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● Align with Mattermost focus
● Potential for high scalability
● Geo partitioning



Why YugabyteDB?
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● Open Source
● Highly compatible with Postgres
● Good metrics
● Good administration
● Cloud hosting service
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My first try
Another DB 3 years ago



Changes needed
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Results
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● Database collapsing in less than 2000 
users

● A lot of back and forth with support
● A lot of specific SQL queries
● p99 performance



Lessons learnt
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● Distributed databases are hard
● It is not a drop-in replacement
● You need to design your queries and 

indexes for your distributed database
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Running on YugabyteDB



Changes needed
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Results first try
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● Database collapsing at 2000 users
● Performance degrading over time
● Both avg and p99 growing over time
● Weird query plans applied



Solution to my problems
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● Run “Analyze”



After running analyze
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Run analyze



Results first try
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Results second try
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● Database working at 6000 users
● Performance stable over time



Results first try
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Lessons learnt
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● It can be drop-in replacement
● It worked great for us without changes
● YugabyteDB requires Analyze to make 

smart decisions about your query 
plans
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Load tests by YugabyteDB



MatterMost open-source load test gives equivalent cost performance 

YugabyteDB Aeon - List Pricing ~$1500

● 12 CPU (3 nodes x 4 CPU) with Load Balancer
● With ElasticSearch
● Maxconns, Idleconns=24
● For peak of 17800 users

AWS Aurora - List Pricing ~$1350

● 2 x db.r7g.xlarge (8vCPU) I/O optimized
● With ElasticSearch
● With storage, insights and backups
● For peak of 17100 users
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Store Call Time (on YugabyteDB)

Users Average P99

8900 < 5ms < 25ms

13200 < 8ms < 50ms

16100 < 12ms < 100ms

Done by the Yugabyte team:

● Zoe Chan
● Mark Peacock



Test Results - 1
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Users Average P99

8900 < 5ms < 25ms

13200 < 8ms < 50ms

16100 < 12ms < 100ms

17800 Supported 
Users



Test Results - 2
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Users Average P99

7700 < 5ms < 25ms

14400 < 8ms < 50ms

16400 < 12ms < 100ms

17300 Supported 
Users



Test Results - 3
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Users Average P99

8500 < 5ms < 30ms

12700 < 8ms < 50ms

15600 < 12ms < 100ms

17900 Supported 
Users
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Comparison with PostgreSQL



Mattermost with Postgres vs with Yugabyte
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● Postgres:
○ Aurora
○ 1 node
○ 2 vCPU
○ 16 GB ram

● YugabyteDB
○ 3 nodes
○ 24 vCPU
○ 96 GB ram



Mattermost with Postgres vs with YugabyteDB
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Mattermost with Postgres vs with YugabyteDB
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Conclusions
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● Mattermosts works and scales on YugabyteDB
● YugabyteDB is very compatible with Postgres
● Postgres is able to handle more with less resources
● YugabyteDB has higher latencies in general
● All previous conclusion are expected and is the price to 

pay for having the benefits of the distributed database



Thank you.


