
Running Mattermost on YugabyteDB
Jesús Espino, Software Engineer @ Mattermost

01
What is Mattermost?
Stats and good practices

Mattermost

3

● Communication platform
● Open Source
● On-prem or Cloud
● Design for mission critical systems
● Focus on stability and security

02
Why a distributed database?
The mattermost use case

Why a distributed database?

5

● Align with Mattermost focus
● Potential for high scalability
● Geo partitioning

Why YugabyteDB?

6

● Open Source
● Highly compatible with Postgres
● Good metrics
● Good administration
● Cloud hosting service

03
My first try
Another DB 3 years ago

Changes needed

8

Results

9

● Database collapsing in less than 2000
users

● A lot of back and forth with support
● A lot of specific SQL queries
● p99 performance

Lessons learnt

10

● Distributed databases are hard
● It is not a drop-in replacement
● You need to design your queries and

indexes for your distributed database

04
Running on YugabyteDB

Changes needed

12

Results first try

13

● Database collapsing at 2000 users
● Performance degrading over time
● Both avg and p99 growing over time
● Weird query plans applied

Solution to my problems

14

● Run “Analyze”

After running analyze

15

Run analyze

Results first try

16

Results second try

17

● Database working at 6000 users
● Performance stable over time

Results first try

18

Lessons learnt

19

● It can be drop-in replacement
● It worked great for us without changes
● YugabyteDB requires Analyze to make

smart decisions about your query
plans

05
Load tests by YugabyteDB

MatterMost open-source load test gives equivalent cost performance

YugabyteDB Aeon - List Pricing ~$1500

● 12 CPU (3 nodes x 4 CPU) with Load Balancer
● With ElasticSearch
● Maxconns, Idleconns=24
● For peak of 17800 users

AWS Aurora - List Pricing ~$1350

● 2 x db.r7g.xlarge (8vCPU) I/O optimized
● With ElasticSearch
● With storage, insights and backups
● For peak of 17100 users

21

Store Call Time (on YugabyteDB)

Users Average P99

8900 < 5ms < 25ms

13200 < 8ms < 50ms

16100 < 12ms < 100ms

Done by the Yugabyte team:

● Zoe Chan
● Mark Peacock

Test Results - 1

22

Users Average P99

8900 < 5ms < 25ms

13200 < 8ms < 50ms

16100 < 12ms < 100ms

17800 Supported
Users

Test Results - 2

23

Users Average P99

7700 < 5ms < 25ms

14400 < 8ms < 50ms

16400 < 12ms < 100ms

17300 Supported
Users

Test Results - 3

24

Users Average P99

8500 < 5ms < 30ms

12700 < 8ms < 50ms

15600 < 12ms < 100ms

17900 Supported
Users

07
Comparison with PostgreSQL

Mattermost with Postgres vs with Yugabyte

26

● Postgres:
○ Aurora
○ 1 node
○ 2 vCPU
○ 16 GB ram

● YugabyteDB
○ 3 nodes
○ 24 vCPU
○ 96 GB ram

Mattermost with Postgres vs with YugabyteDB

27

Mattermost with Postgres vs with YugabyteDB

28

Conclusions

29

● Mattermosts works and scales on YugabyteDB
● YugabyteDB is very compatible with Postgres
● Postgres is able to handle more with less resources
● YugabyteDB has higher latencies in general
● All previous conclusion are expected and is the price to

pay for having the benefits of the distributed database

Thank you.

