(@ Mattermost

Running Mattermost on YugabyteDB

Jesus Espino, Software Engineer @ Mattermost

What is Mattermost?

Stats and good practices

Mattermost

e

Contributors v

B Threads

FAVORITES

@ Command Center
@ Security Incident #4 ...

@ Feature: Install

COMPANY
@ Announcements
@ R

@ Welcome

v MOBILE

@ Mobile

@ Mobile DevOps [1]

2 Hilda Martin, Steve M

v CLOUD

@ Cloud Engineering

Mobile DevOps v

®e
° 4@®
B Amara Nufies
@

Mobile User

John Vu

4
%?! Alex Rodriguez

John Vu

| make a Jira ti

Zoom Meeting

Personal Meeting ID (i

< Run details @

API Performance Degradation

After upgrading to 5.31.2, the customer started seeing requests to /api/v4/users
taking longer, with their endusers reporting perf issues such as slow channel...

Owner Participants

gj Leonard Riley \ ’2 a‘,;

Jpdate due in

50 min

Tasks
Triage

Start conference call

L
Determine severity according to guideline

If #sev-1, add @commandteam to channel

Tried Solutions

Test proxy cache for static file requests

Confirm blue/green environments identical

Communication platform

Open Source

On-prem or Cloud

Design for mission critical systems
Focus on stability and security

Why a distributed database?

The mattermost use case

Why a distributed database?

€V

(ﬁ@ &0 (ﬁ@

(€0
%)

Align with Mattermost focus
Potential for high scalability
Geo partitioning

Why YugabyteDB?

Open Source

Highly compatible with Postgres
Good metrics

Good administration

Cloud hosting service

QP
g
yugabyteDB

My first try

Another DB 3 years ago

Changes needed

.gitignore |

Makefile |

app/export_test.go

app/server.go

build/docker-compose-generator/main.go

build/docker-compose.common.yml

build/docker-compose.yml

docker-compose.makefile.yml

docker-compose.yaml

einterfaces/

model/config.go

model/license.go

store/searchtest/channel layer.go

store/searchtest/post_layer.go

store/searchtest/user layer.go

store/sqlstore/channel store.go

store/sqlstore/channel store categories.go |

store/sqlstore/channel_store_test.go

store/sqlstore/group store.go

store/sqlstore/imports/placeholder.go
|
|
|
|
|
I
|
:
|
|
|
|
|
|
|
|

-

-

-

store/sqlstore/link metadata store.go
store/sqlstore/oauth _store.go
store/sqlstore/plugin store.go
store/sqlstore/post store.go
store/sqlstore/preference_store.go
store/sqlstore/reaction_store.go
store/sqlstore/store.go

store/sqlstore/store test.go
store/sqlstore/team _store.go
store/sqlstore/upgrade.go

store/sqlstore/user access token store.go
store/sqlstore/user store.go

store/store.go

store/storetest/channel store.go
store/storetest/mocks/Store.go
store/storetest/settings.go
store/storetest/store.go
vendor/github.com/Masterminds/squirrel/go.mod
vendor/gopkg.in/yaml.v2/go.mod

39 files changed, 349 insertions(+), 47 deletions(-)

N

N =

1
3
P
8
1
1
5
8
8
2
9
6
3
3
3
73
39
3
2
4
2
2
4
2
2
pi
3
0
0
4
6
2
5

Results

6
e Database collapsing in less than 2000
gz users
8 , e Alot of back and forth with support
e Alot of specific SQL queries
" 11w 11:33 11:34 11:35 11:36 e p99 performance

P99 latency 4563.4 ms

Queries per second 693.3

Lessons learnt

Distributed databases are hard

It is not a drop-in replacement

You need to design your queries and
indexes for your distributed database

10

Running on YugabyteDB

Changes needed

server/channels/db/migrations/postgres/000066 upgrade posts v6.0.up.sql |
server/channels/db/migrations/postgres/000111 update vacuuming.down.sql |

server/channels/db/migrations/postgres/000111 update vacuuming.up.sql |
3 files changed, 24 insertions(+), 2 deletions(-)

5
10
11

12

Results first try

API Request Time (Server)

Database collapsing at 2000 users
Performance degrading over time
Both avg and p99 growing over time
Weird query plans applied

LA A T
NN
| TR [N
i A

| [A
SV W

1115

13

Solution to my problems

Run “Analyze”

14

After running analyze

Run analyze

15

Results first try

YSQL Operations/Sec &

600
750N
450 // \
i
% —
/ - i
” / S
/
0 — o T ey
- @ Insert <@ Upd -

CPU Usage (Percent) 0

80

YSQL Average Latency (ms) 0

Disk Usage (GB) o

16

Results second try

APl Request Time (Server)

Database working at 6000 users
Performance stable over time

17

Results first try

YSQL Operations/Sec O

\‘\ St /_//f\‘\ NG Nl
16:28 1 6 [) 1 70 04 718 7 7
- - | - D
CPU Usage (Percent) 0
100
—
5
/—/-\\
) /// \’\
25 -
0 y | \
16:28 16:32 536 6:44 52 16:56 17:00 704 7:08 7 7 7 w21 725
- co

YSQL Average Latency (ms) ©

18

Lessons learnt

It can be drop-in replacement

It worked great for us without changes
YugabyteDB requires Analyze to make
smart decisions about your query
plans

19

Load tests by YugabyteDB

MatterMost open-source load test gives equivalent cost performance

YugabyteDB Aeon - List Pricing ~$1500

12 CPU (3 nodes x 4 CPU) with Load Balancer

With ElasticSearch

Maxconns, ldleconns=24
For peak of 17800 users

Store Call Time (on YugabyteDB)

Users Average P99

8900 <5ms < 25ms
13200 < 8ms < 50ms
16100 <12ms <100ms

AWS Aurora - List Pricing ~$1350

2 x db.r7g.xlarge (8vCPU) I/0 optimized
With ElasticSearch

With storage, insights and backups

For peak of 17100 users

Done by the Yugabyte team:

e Zoe Chan
e Mark Peacock

21

Test Results - 1

Users Average P99

8900 < 5ms < 25ms e

19:00 19:05 19:10
== 2pp-0:8067 == app-1:8067 == Total

1 3200 < 8mS < 50ms Number of Connected Devices (WebSocket Connections)
16100 <12ms <100ms

17800 Supported
Users

19:00 19:05 19:10
app-0:8067 == app-1:8067 == Total

Store Call Time (Server)

500 ms
400 ms
300 ms
200 ms

100 ms

0s
19:00 19:05 19:10 19:15 19:25
== avg-app-0:8067 == avg-app-1:8067 == p99-app-0:8067 == p99-app-1:8067

Test Results - 2

Users Average P99

7700 <5ms < 25ms e

09:40 09:50 10:00 10:10 10:30 10:40 10:50

11:00 11:10 i 11:50
= app-0:8067 == app-1:8067 == Total

12:00

1 4400 < 8ms < 50ms Number of Connected Devices (WebSocket Connections)
16400 <12ms <100ms

17300 Supported
Users

0
09:40 09:50 10:00 10:10 10:30 10:40 10:50

11:00 11:10 11:20 11:30 11:40
app-0:8067 == app-1:8067 == Total

Store Call Time (Server)
250 ms
200 ms
150 ms
100 ms

50 ms

0s
09:40 09:50 10:00 10:10 10:20 10:30 10:40 10:50
o= avg-app-0:8067 == avg-app-1:8067 == p99-app-0:8067 == p99-app-1:8067

Test Results - 3

Users Average P99

8500 < 5mS < 30mS 12:45 12:50 12:55 13:15 13:20 13:25 13:35

= 2pp-0:8067 == app-1:8067 == Total

1 2700 < 8ms < 50ms Number of Connected Devices (WebSocket Connections)
15600 <12ms < 100ms

17900 Supported
Users

12:45 12:50 : 13:10 13:15 13:20
= app-0:8067 == app-1:8067 == Total

Store Call Time (Server)

600 ms
500 ms
400 ms
300 ms

200 ms

= avg-app-0:8067 == avg-app-1:8067 == p99-app-0:8067 == p99-app-1:8067

Comparison with PostgreSQL

Mattermost with Postgres vs with Yugabyte

e Postgres:

o Aurora

o 1 node

o 2vCPU

o 16 GBram
e YugabyteDB

o 3 nodes

o 24vCPU

o 96 GBram

Mattermost with Postgres vs with YugabyteDB

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.2

0.

0.1

0.

0.0!

Avg Store times

T T T T Vigabyte
base ——
0 100 200 300 400 500 600 700
time (normalized)
Avg API times
2 ! yugabyte
base
2
5
1 J
° W |
W
0 k\“’— f H i i
0 100 200 300 400 500 600 700

time (normalized)

25

15

0.5

45

35

25

15

0.5

P99 Store times

ugabyte
T

W

——+ + o
0 100 200 300 400 500 600 700
time (normalized)
P99 API times
! | : ugabyle
e bayée
50 J
R e e~
e R S WS D o M S
0 T L T T
0 100 200 300 400 500 600 700

time (normalized)

CPU Utilization

200

180

160 |

140

120 +

100

80

60

A

40

20 +

o

8x108
7x108
6x108
5x108
4x108
3x108
2x108

1x108

300 400
time (normalized)

Heap In Use

300 400
time (normalized)

Mattermost with Postgres vs with YugabyteDB

Goroutines In Use

20000

18000

e,

16000

i

14000

/.

12000 +

10000

8000

6000

4000 +

2000 |+

1.2x108

1x108

8x107

6x107

4x107

2x107

300 400 500 600
time (normalized)
Stack In Use
!] " yugabyte
base

200 300 400

time (normalized)

500 600

Conclusions

Mattermosts works and scales on YugabyteDB
YugabyteDB is very compatible with Postgres

Postgres is able to handle more with less resources
YugabyteDB has higher latencies in general

All previous conclusion are expected and is the price to
pay for having the benefits of the distributed database

29

(@ Mattermost

Thank you.

