
How to lose 
weight?

Aapo Alasuutari, FOSDEM 2025



About me

● Work at Valmet Automation
○ Software architect for a browser based automation UI platform

○ TypeScript developer by day

● Avid choir singer

● OpenSource enthusiast, contributor, albatross

● Data-oriented design zealot

● Developing Nova JavaScript engine
○ Rust developer by night!



What do I mean by weight?

● Amount of memory used at runtime

● Amount of code

● Complexity of program and required context knowledge to understand it

● For any program, there exist an ideal weight

● Losing weight is about reasonably approaching ideal memory weight
● We can calculate the ideal memory weight!

○ Shannon entropy or “How surprising is the data?”
○ How many Y/N questions must be answered correctly to understand data?

○ = How many bits of information does the data hold!



A dose of ground truth

● A JavaScript Value is usually a reference to heap data
● Size of a Value depends only on the “engine”

○ 4 bytes in Chrome, 8 bytes in Firefox, Safari, Node.js, Deno, Bun

● Booleans and 32-bit integer numbers are always stack-only
○ All numbers are stack only in Firefox, Safari, Bun; Chrome supports up to 31-bit integers on stack

● Heap data always has an “header” reference + data - (size in Node v23.4.0, size in Chrome)
○ Number: 8 byte IEEE-754 double precision floating point value - (16b, 12b)
○ String: Length + string bytes - (16b+, 12b+)
○ Symbol: Description string reference + engine specific data - (24b, 16b)
○ Object: 2 + N * property count references - (24b, 12b)
○ Array: Object + 32-bit integer length (rounds up to reference) - (32b, 16b)
○ Map/Set: Object + 1 + N * prop count * C - (32b, 16b)
○ ArrayBuffer: Object + buffer reference, byte length, max byte length, detach key, … - (96b, 52b)
○ Uint8Array: Object + ArrayBuffer reference, byte length, byte offset, length, .. - (104b, 60b)



Cut to the chase! How to lose weight?

● Remove things you don’t need

● Get rid of booleans

● Use context knowledge

● Choose appropriate data sizes / storage

● Get rid of heap “headers” and object data mostly or 

entirely

● Struct-of-Arrays enables these!



Let’s look at code!



In conclusion

● Losing weight is about reasonably approaching ideal memory weight
● Struct of Arrays enables using the tools that JavaScript has

○ Real life examples: 80 MiB => 9 MiB, 350 MiB => 15 MiB, 10 MiB => 3 MiB

● Wait: TypedArray is massive compared to an Array! Isn’t that bad?
○ Yes! Fundamental problem with OOP: Subclass is can only grow in size
○ Without ArrayBuffer sharing, a TA breaks even at between 20 and 50 items

● What if the JavaScript engine lost weight?
○ Enter Nova JavaScript engine!
○ Approach ideal memory weight at the cost of code and complexity
○ Subclass objects no longer grow in size

■ 32b (12-16b) for ArrayBuffer, 20b (12-16b) for TypedArrays



Q&A
https://github.com/aapoalas/losing-weight

Nova JavaScript Engine

https://trynova.dev/

https://github.com/trynova/nova

https://github.com/aapoalas/losing-weight
https://trynova.dev/
https://github.com/trynova/nova


Post-scriptum 1: General weight-loss tricks

● Removing booleans:
○ Why? 1 bit stored in 32 or 64 bits! 1.6-3.1% memory utilization!
○ Why? Adding booleans produces combinatorial state explosion with impossible states
○ Split group of objects with boolean property to two groups of objects

■ Remember to remove properties made unnecessary by the split, if reasonable
○ Use Set/WeakSet membership to signal rare boolean true

● Choosing column type in Struct-of-Arrays
○ Numeric data: Appropriate TypedArray
○ Unique strings: Array of strings (normal Arrays are perfectly fine sometimes)
○ Enums: Appropriate TypedArray
○ Index to Array / another SoA: Uint32Array when in doubt, use smaller if you can
○ Boolean: Uint8Array of bytes or bits, or a Set of non-default indexes for if only rarely true/false
○ Rarely set value: Map of indexes to values
○ Rarely non-default value: Map of indexes to non-default values
○ Rarely non-small value: TypedArray + Map<index, value>, use sentinel in TA if full value is in Map
○ Nullable values: Use a sentinel value (eg. maximum value) in TypedArray as “null”

● Hint: Allocate common ArrayBuffer for all TypedArrays to share in the same SoA



Post-scriptum 2: String weight-loss tricks

● Repetitive strings:
○ Store in an array of unique strings
○ Refer to array by index using the smallest possible TypedArray
○ Eg. 200 strings => Uint8Array, 300 strings => Uint16Array
○ Re-check size when adding strings, change to larger TypedArray if necessary
○ Equality check is just index equality check
○ Effectively: Turns strings into a dynamically generated enum

● Unique strings made out of repetitive parts:
○ Split strings into parts to get to the repetitive parts (remove statically known parts!)
○ Store each “kind” of part separately in an array of unique strings and refer by index
○ If number of parts is known, works excellently: As many indexes as there are parts
○ If number of parts is variable, store indexes in an Array or side-table and refer by index + length
○ Equality check is length equality and each index’ equality check
○ Effectively: Turns strings into a dynamically generated sum/combination/struct of enums



Post scriptum 3: Does it make sense?

● Not every memory optimisation makes sense! Depends on your use-case

● As data becomes more dynamic, SoA and other related optimisations become harder to 

manage
○ At some point you might have to start thinking about implementing your own garbage collection!

● Separating data into columns makes iterating over rows of a column faster but makes 

cross-column work slower.
○ Eg. Think of a box defined as { x0, x1, y0, y1 }:

○ SoA makes looking for a box by a point faster but calculating the box’s circumference slower

○ Know your common case!

● Converting a boolean to Set membership makes lookup slower (maybe)

● Measure, measure, measure!


