How to lose
weight?

Aapo Alasuutari, FOSDEM 2025

About me

e Work at Valmet Automation

o Software architect for a browser based automation Ul platform
o TypeScript developer by day

Avid choir singer
OpenSource enthusiast, contributor, albatross
Data-oriented design zealot

Developing Nova JavaScript engine
o Rust developer by night!

What do | mean by weight?

Amount of memory used at runtime
Amount of code
Complexity of program and required context knowledge to understand it
For any program, there exist an ideal weight
Losing weight is about reasonably approaching ideal memory weight
We can calculate the ideal memory weight!

o Shannon entropy or “How surprising is the data?”

o How many Y/N questions must be answered correctly to understand data?
o =How many bits of information does the data hold!

A dose of ground truth

e A JavaScript Value is usually a reference to heap data
Size of a Value depends only on the “engine”

o

4 bytes in Chrome, 8 bytes in Firefox, Safari, Node.js, Deno, Bun

e Booleans and 32-bit integer numbers are always stack-only

o

All numbers are stack only in Firefox, Safari, Bun; Chrome supports up to 31-bit integers on stack

e Heapdataalways has an “header” reference + data - (size in Node v23.4.0, size in Chrome)

o

O O O O O O O

Number: 8 byte IEEE-754 double precision floating point value - (16b, 12b)

String: Length + string bytes - (16b+, 12b+)

Symbol: Description string reference + engine specific data - (24b, 16b)

Object: 2 + N * property count references - (24b, 12b)

Array: Object + 32-bit integer length (rounds up to reference) - (32b, 16b)

Map/Set: Object + 1 + N * prop count * C - (32b, 16b)

ArrayBuffer: Object + buffer reference, byte length, max byte length, detach key, ... - (96b, 52b)
Uint8Array: Object + ArrayBuffer reference, byte length, byte offset, length, .. - (104b, 60b)

\ Cut to the chase! How to lose weight?

Remove things you don’t need
Get rid of booleans
Use context knowledge

Choose appropriate data sizes / storage

Get rid of heap “headers” and object data mostly or
entirely

Struct-of-Arrays enables these!

Let's look at code! \

INn conclusion

e Losing weight is about reasonably approaching ideal memory weight
Struct of Arrays enables using the tools that JavaScript has
o Real life examples: 80 MiB => 9 MiB, 350 MiB => 15 MiB, 10 MiB => 3 MiB
e Wait: TypedArray is massive compared to an Array! Isn’t that bad?

o Yes! Fundamental problem with OOP: Subclass is can only grow in size
o Without ArrayBuffer sharing, a TA breaks even at between 20 and 50 items

e What if the JavaScript engine lost weight?

o Enter Nova JavaScript engine!
o Approach ideal memory weight at the cost of code and complexity

o Subclass objects no longer grow in size
m 32b(12-16b) for ArrayBuffer, 20b (12-16b) for TypedArrays

https://github.com/aapoalas/losing-weight

Nova JavaScript Engine

https://trynova.dev/

https://eithub.com/trynova/nova

https://github.com/aapoalas/losing-weight
https://trynova.dev/
https://github.com/trynova/nova

Post-scriptum 1. General weight-loss tricks

e Removingbooleans:
o Why? 1 bit stored in 32 or 64 bits! 1.6-3.1% memory utilization!
o Why? Adding booleans produces combinatorial state explosion with impossible states
o Split group of objects with boolean property to two groups of objects
[Remember to remove properties made unnecessary by the split, if reasonable
o Use Set/WeakSet membership to signal rare boolean true
e Choosing column type in Struct-of-Arrays
Numeric data: Appropriate TypedArray
Unique strings: Array of strings (normal Arrays are perfectly fine sometimes)
Enums: Appropriate TypedArray
Index to Array / another SoA: Uint32Array when in doubt, use smaller if you can
Boolean: Uint8Array of bytes or bits, or a Set of non-default indexes for if only rarely true/false
Rarely set value: Map of indexes to values
Rarely non-default value: Map of indexes to non-default values
Rarely non-small value: TypedArray + Map<index, value>, use sentinel in TA if full value is in Map
o Nullable values: Use a sentinel value (eg. maximum value) in TypedArray as “null”
e Hint: Allocate common ArrayBuffer for all TypedArrays to share in the same SoA

O O O O O O O O

Post-scriptum 2: String weight-loss tricks

e Repetitive strings:

O O O O O

(@)

Store in an array of unique strings

Refer to array by index using the smallest possible TypedArray

Eg. 200 strings => Uint8Array, 300 strings => Uint16Array

Re-check size when adding strings, change to larger TypedArray if necessary
Equality check is just index equality check

Effectively: Turns strings into a dynamically generated enum

e Unique strings made out of repetitive parts:

(@)

O O O O O

Split strings into parts to get to the repetitive parts (remove statically known parts!)

Store each “kind” of part separately in an array of unique strings and refer by index

If number of parts is known, works excellently: As many indexes as there are parts

If number of parts is variable, store indexes in an Array or side-table and refer by index + length
Equality check is length equality and each index’ equality check

Effectively: Turns strings into a dynamically generated sum/combination/struct of enums

Post scriptum 3: Does it make sense?

Not every memory optimisation makes sense! Depends on your use-case
e Asdatabecomes more dynamic, SoA and other related optimisations become harder to
manage
o Atsome point you might have to start thinking about implementing your own garbage collection!
e Separating data into columns makes iterating over rows of a column faster but makes
cross-column work slower.
o Eg.Think of a box defined as { x0, x1, y0, y1 }
o SoA makes looking for a box by a point faster but calculating the box’s circumference slower
o Know your common case!

Converting a boolean to Set membership makes lookup slower (maybe)
e Measure, measure, measure!

