
Abusing 
reborrowing for 
fun, profit, and a 
safepoint garbage 
collector

Aapo Alasuutari, FOSDEM 2025



About me

● Work at Valmet Automation
○ Software architect for a browser based automation UI platform

○ TypeScript developer by day

● Avid choir singer

● OpenSource enthusiast, contributor, albatross

● Data-oriented design zealot

● Developing Nova JavaScript engine
○ Rust developer by night!



Quick refresh on lifetimes and borrowing in Rust

● Lifetime is a period of time / section of code
○ References are ways to access a data

● Three types of lifetimes:

○ Static

○ Owned

○ Generics

● Shared (&’a T): I am observing T for the duration of ‘a. No mutating!

● Exclusive: (&’mut T): I am mutating T for the duration of ‘a. No observing!



Reborrowing

● Every use of a reference is formally a reborrow for a shorter lifetime
○ Call of fn with &’a mut T reborrows for &’b where ‘a: ‘b
○ If ‘b escapes the call, ‘a is used to determine if the escape is acceptable

● An exclusive borrow can reborrowed as shared
○ Call with &mut T a method that takes &T is perfectly okay

○ Reborrow for shorter lifetime means that if ‘b doesn’t escape call, &mut T can 

be used as exclusive again after the call

○ If ‘b does escape the call, &mut T is “in use” for the escaped lifetime

● Reborrow “signature”:

○ fn reborrow(&’short (mut) T: ‘long) -> T: ‘short



Challenge: A safe exact tracing safepoint garbage 
collector with unrooted values using lifetimes
● “Garbage collector”?

○ System to automatically determine which memory is unused and release it.

● “Tracing”?
○ Memory usage is determined by following references (“tracing”) and 

comparing traced objects to all objects. Unreachable objects can be released.

● “Exact”?
○ Tracing starts from static places and follows static references.

● “Safepoint”?
○ Garbage collection happens only at defined “safe points” in the program.
○ Exact safepoint collector: At safepoint, all values must be in statical places.
○ Unrooted values: Values on stack must be rooted before safepoint!

■ Lifetimes please!



Let’s look at code!



Can this be made nicer?

● .reborrow(), .shared() calls can be eliminated
○ “autoreborrow “ traits

● .unbind() calls for method parameters requires a new feature
○ “Interprocedural reborrowing”

● .unbind().bind(shared) calls for return values requires a new feature
○ “Safe to downgrade to shared exclusive references”
○ Ugh



Q&A
https://github.com/aapoalas/abusing-reborrowing

Nova JavaScript Engine

https://trynova.dev/

https://github.com/trynova/nova/

https://github.com/aapoalas/abusing-reborrowing
https://trynova.dev/
https://github.com/trynova/nova/

