

About me

● Linux OS Distribution developer
● Debian, Ubuntu, Clear Linux, Wolfi
● SysV init, Upstart, Systemd, Grub, Linux, OpenSSL …
● Principle Engineer at Chainguard
● Focused on building production-grade container images

● Linux focused, broad application, tested at scale on x86_64 & arm64
● Production builds
● Transferable to other arches / OSes

go build -ldflags -w

● Debug information is on by default
● It can be quite large in size
● Often unused in production

Resolution:

● go build -ldflags -w

Alternative

● Strip & Store in debuginfod server: strip –strip-debug

go build -trimpath

● Full file paths leak into binary
● Takes up space & lead to non-reproducible builds

Resolution:

● go build -trimpath

Caveat:

● Removes -X importpath.name=value definitions from buildinfo
● Upstream bug report in progress to resolve this

go build -tags netgo,osusergo

● Default libc/NSS for DNS and username resolution
● Old hammer CGO_ENABLED=0
● Can elect golang implementation & maintain CGO access
● Helps with boringcrypto, go-openssl, go-msft-fips

Resolution:

● For containers / portable binaries: go build -tags netgo,osusergo
● For explicit Host os resolution: CGO_ENABLED=1 go build

GOAMD64=v2 GOARM64=v8.0

● Production hardware is not 20 years old
● Optimisations available that can be used by default
● Depending on your deployments can use v3, v4 too

Resolution:

● Environment variables: GOAMD64=v2 GOARM64=v8.0

Caveat:

● Check your production hardware SKUs, some have broken v3 support

go build -buildmode=pie

● Position Independent Code/ Executable can improve security
● Should use for dynamic binaries
● Security scanners / hardening-check report this

Resolution:

● go build -buildmode=pie

Alternative:

● Also available with external linker

go build -ldflags -X main.Version=$(git describe…)

● go build sets commit & date; and go install sets tag; but not both
● Do not use trimpath
● Check with go version -m & scanners look for it too

Solution:

$ go build -ldflags -X main.Version=$(git describe --tags --dirty --always --abbrev=12)

$ go version -m mybinary | grep -e main.Version

build -ldflags="-X main.Version=1.19.0”

CGO Hardening

● Accelerated code & C library access is convenient
● OpenSSF Compiler Options Hardening Guide for C and C++
● CFLAGS / CXXFLAGS ignored by go
● Distributions (rpmspec / dpkg-buildflags) typically do not set these

Resolution:

● Use CGO_CFLAGS CGO_CXXFLAGS etc
● Use wrapper for gcc -specs with file
● Use clang .cfg automatically loaded config files

https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++.html

Gcc spec file example

Gcc wrapper:

#!/bin/sh

exec /usr/bin/${0##*/} -specs "${GCC_SPEC_FILE:-openssf.spec}" "$@"

Reduced OpenSSF spec file for GCC-14:

*self_spec:

+ -O2 -fhardened -Wl,--as-needed,-O1,--sort-common,-z,noexecstack,
-z,relro,-z,now -fno-delete-null-pointer-checks -fno-strict-overflow
-fno-strict-aliasing -fno-omit-frame-pointer -mno-omit-leaf-frame-pointer

[security] Vulnerability in golang.org/x/net

Hello gophers,

We have tagged version v0.33.0 of golang.org/x/net in order to address a security issue.

x/net/html: non-linear parsing of case-insensitive content

Version v0.33.0 of golang.org/x/net fixes a vulnerability in the golang.org/x/net/html package which
could cause a denial of service.

An attacker can craft an input to the Parse functions that would be processed non-linearly with respect
to its length, resulting in extremely slow parsing.

Thanks to Guido Vranken for reporting this issue.

This is CVE-2024-45338 and Go issue https://go.dev/issue/70906.

Cheers,
Go Security team

http://golang.org/x/net
http://golang.org/x/net
http://golang.org/x/net/html
https://go.dev/issue/70906

Keep symbols tables!

● Govulncheck in -mode=binary reports module level CVEs
● If binary has symbols tables, it reports symbol level CVEs

Example from Wolfi

● Packages/Sub-packages found with x/net : 1065
● x/net/html Symbols found in binaries : 242
● Govulncheck : 13

This often removes need to upgrade, rebuild, re-release binaries

https://pkg.go.dev/golang.org/x/vuln/cmd/govulncheck

Example coredns v1.11.1

$ go install -ldflags -s github.com/coredns/coredns@v1.11.1

$ govulncheck -mode=binary coredns

Your code is affected by 15 vulnerabilities from 7 modules and the Go standard
library.

This scan found no other vulnerabilities in packages you import or modules you

require.

http://github.com/coredns/coredns@v1.11.1

Example coredns v1.11.1

$ go install github.com/coredns/coredns@v1.11.1

$ govulncheck -mode=binary coredns

Your code is affected by 8 vulnerabilities from 4 modules and the Go standard
library.

This scan also found 2 vulnerabilities in packages you import and 5

vulnerabilities in modules you require, but your code doesn't appear to call

these vulnerabilities.

http://github.com/coredns/coredns@v1.11.1

How to keep symbols tables?

● Do not use: go build -ldflags -s
● Do not use: strip --strip-all
● Verify with: go tool nm

Caveats:

● There is binary size penalty
● Worth it, if production binary is subject to security scans
● Check if your security scanners support this
● Reflection (urgh)

Rince & repeat - rebuild & re-release

● Go toolchains have bug fixes & CVE fixes
● Dependencies have bug fixes & CVE fixes
● Continuously release binaries, or tag micro-point releases
● Same code built with new go toolchain can be safer

Solution

● Bump “toolchain go1.21.3” in go.mod
● Go get dependencies in go.mod
● Tag a micro-point releases
● Automate low-key micro-point releases

Thank you!
Will try to contribute this to OpenSSF Working Group

I have Chainguard Linky stickers!

Questions?

