OPEN-SOURCE CPU: RISC-V CFU AND ZEPHYR

Mohammed Billoo MAB Labs Embedded Solutions FOSDEM 25

Creative Commons 💿 🛈

Mohammed Billoo mab@mab-labs.com

in /mab-embedded

X @mabembedded

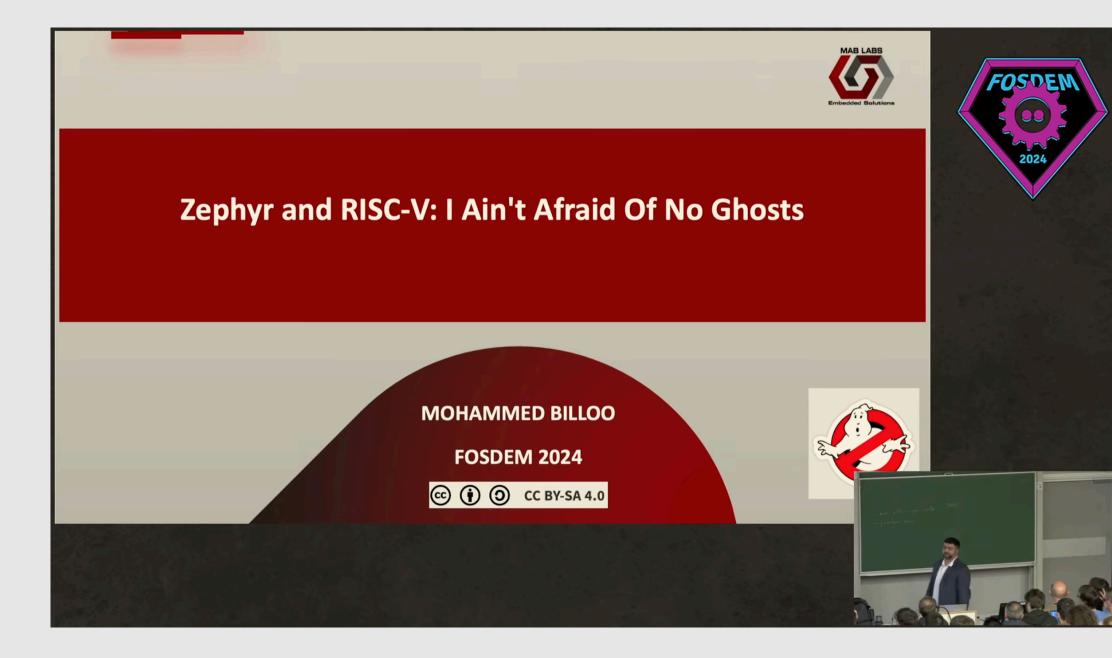
Creative Commons

THE SPEAKER

- Embedded Software Consultant (NYC, USA)
- Design Work
 - Medical Devices
 - Scientific Instruments
 - LIDAR
 - Custom ASICs
- Experience/Expertise
 - Zephyr RTOS
 - Embedded Linux
 - GUI-based applications

BIOS FOOD NEWSLETTER Training/Workshops

Creative Commons


www.mab-labs.com

AGENDA

- Background 0
- Under the Hood
- The Plan
- How It Went (not good)
- Next Steps (need debugging help) 0

https://www.youtube.com/watch?v=syA3xxKfB4s&t=28s

Creative Commons

BACKGROUND

FOSDEM24

- Used neorv32 project to implement RISC-V ISA in an FPGA
 - Has support for built-in bootloader
- Used vendor tools to build and flash **FPGA**
- Loaded "Hello World" Zephyr application on to FPGA.
 - Zephyr has support for "neorv32" board
 - Uploaded application using bootloader

BACKGROUND

- After some fennagling, got output! 0
- See previous presentation for details
- Next step was to investigate CFU
- Roadblock 0
 - Design with CFU enabled didn't fit in FPGA 0

CMD:>hAvailable CMDs:

- h: Help
- r: Restart
- u: Upload
- s: Store to flash
- 1: Load from flash
- x: Boot from flash (XIP)

e: Execute

CMD:> e

Booting from 0x00000000...

*** Booting Zephyr OS build 6f56a6a91e2c *** Hello World! neorv32

MOTIVATION

- **C**ustom **F**unction **U**nit?
- Allows us to offload functionality to hardware (FPGA)
- Specific for operations that are inefficient (in software):
 - Performance
 - Latency
 - **Energy Consumption**
 - **Program Memory**

Creative Commons 💿 🛈

MOTIVATION

- Crypto
- Communications
- Arithmetic
- Image Processing 0
- **Requires CPU dependency**

DETAILS

- Leverages "custom-0" and "custom-1" RISC-V opcodes 0
- CFU is implemented using the "Zxcfu" extension of the RISC-V ISA
 - Specific to neorv32
- Sample implementation of XTEA in RTL 0
 - Simple block cipher
 - Embedded systems

ſ	inst[4:2]	000	001	010	011	100	101	110	111
	inst[6:5]								(> 32b)
	00	LOAD	LOAD-FP	custom-0	MISC-MEM	OP-IMM	AUIPC	OP-IMM-32	48b
	01	STORE	STORE-FP	custom-1	AMO	OP	LUI	OP-32	64b
	10	MADD	MSUB	NMSUB	NMADD	OP-FP	reserved	custom-2/ $rv128$	48b
	11	BRANCH	JALR	reserved	JAL	SYSTEM	reserved	custom- $3/rv128$	$\geq 80b$

Creative Commons

|--|

Table 19.1: RISC-V base opcode map, inst[1:0]=11

UNDER THE HOOD

rtl/core/neorv32_cpu_cp_cfu.vhd

-- instruction identifiers (funct3 bit-field) --

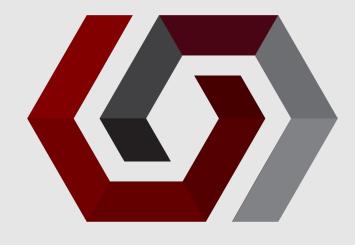
Use "intrinsics" to "call" functions in CFU

sw/example/demo_cfu/main.c

<pre>#define xtea_hw_init(sum)</pre>	neorv32_cfu_r3_	instr(0b0000000, 0b100,	sum, 0)
<pre>#define xtea_hw_enc_v0_ste</pre>	p(v0, v1) neorv32_cfu_r3_	instr(0b000000, 0b000,	v0, v1)
<pre>#define xtea_hw_enc_v1_ste</pre>	p(v0, v1) neorv32_cfu_r3_	instr(0b000000, 0b001,	v0, v1)
<pre>#define xtea_hw_dec_v0_ste</pre>	p(v0, v1) neorv32_cfu_r3_	instr(0b000000, 0b010,	v0, v1)
<pre>#define xtea_hw_dec_v1_ste</pre>	p(v0, v1) neorv32_cfu_r3_	instr(0b000000, 0b011,	v0, v1)
<pre>#define xtea_hw_illegal_i</pre>	neorv32_cfu_r3_	instr(0b000000, 0b111,	0, 0)

Creative Commons 💿 🛈

constant xtea_enc_v0_c : std_ulogic_vector(2 downto 0) := "000"; constant xtea_enc_v1_c : std_ulogic_vector(2 downto 0) := "001"; constant xtea_dec_v0_c : std_ulogic_vector(2 downto 0) := "010"; constant xtea_dec_v1_c : std_ulogic_vector(2 downto 0) := "011"; constant xtea_init_c : std_ulogic_vector(2 downto 0) := "100";

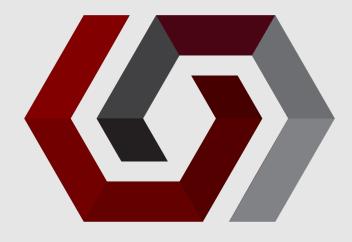

UNDER THE HOOD

<pre>#define xtea_hw_init(sum)</pre>	<pre>neorv32_cfu_r3_instr(0b0000000,</pre>	0b100, sum,	0)
<pre>#define xtea_hw_enc_v0_step(v0, v1)</pre>	<pre>neorv32_cfu_r3_instr(0b0000000,</pre>	0b000, ∨0,	v1)
<pre>#define xtea_hw_enc_v1_step(v0, v1)</pre>	<pre>neorv32_cfu_r3_instr(0b0000000,</pre>	0b001, ∨0,	v1)
<pre>#define xtea_hw_dec_v0_step(v0, v1)</pre>	<pre>neorv32_cfu_r3_instr(0b0000000,</pre>	0b010, ∨0,	v1)
<pre>#define xtea_hw_dec_v1_step(v0, v1)</pre>	<pre>neorv32_cfu_r3_instr(0b0000000,</pre>	0b011, ∨0,	v1)
<pre>#define xtea_hw_illegal_inst()</pre>	<pre>neorv32_cfu_r3_instr(0b0000000,</pre>	0b111, 0,	0)

#define neorv32_cfu_r3_instr(funct7, funct3, rs1, rs2) \

Creative Commons 🖸 🛈

sw/lib/include/neorv32_cpu_cfu.h CUSTOM_INSTR_R3_TYPE(funct7, rs2, rs1, funct3, 0b0001011)


UNDER THE HOOD

#define neorv32_cfu_r3_instr(funct7, funct3, rs1, rs2) \ CUSTOM_INSTR_R3_TYPE(funct7, rs2, rs1, funct3, 0b0001011)

```
({
   uint32_t __return;
   asm volatile (
     ".word (
       (((" #funct7 ") & 0x7f) << 25) |
       ((( reg_%2 ) & 0x1f) << 20) |
       ((( reg_%1 ) & 0x1f) << 15) |
       (((" #funct3 ") & 0x07) << 12) |
       ((( reg_%0 ) & 0x1f) << 7) |
       (((" #opcode ") & 0x7f) << 0)
     );"
      : [rd] "=r" (__return)
     : "r" (rs1),
       "r" (rs2)
    );
    __return;
```

Creative Commons

sw/lib/include/neorv32_intrinsics.h

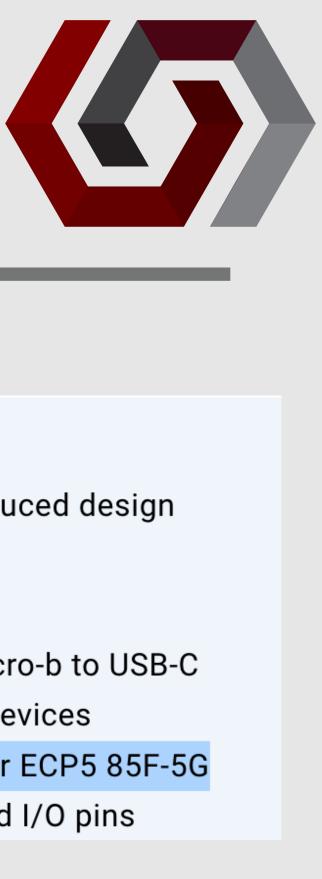
#define CUSTOM_INSTR_R3_TYPE(funct7, rs2, rs1, funct3, opcode) \

Assembler calls!

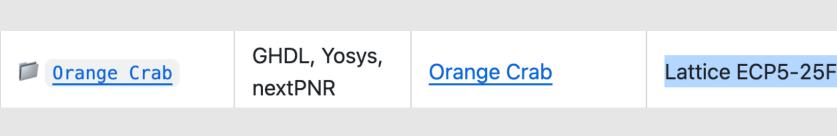
THE PLAN

- Get board with FPGA that can fit design with CFU 0
- Enable CFU in board top level RTL file 0
- Build and flash design 0
- Load Zephyr Blinky/Hello World 0
- Add function calls to Zephyr from neorv32 library to call instrinsics 0
 - Need to pull in header/source files from neorv32 repo
- Confirm XTEA operation
 - Compare performance of XTEA in HW vs SW

https://orangecrab-fpga.github.io/orangecrab-hardware/



- OrangeCrab
 - Need newer hardware version
 - Larger FPGA to support CFU functionality
- https://github.com/stnolting/neorv32-setups/tree/main/osflow 0
 - Describes process to build FPGA image
 - OrangeCrab "setup" uses open-source tools
 - Current implementation uses smaller FPGA 0
 - Lattice ECP5-25F requires modifications



Hardware r0.2.1

Status: Currently produced design

Changes from r0.2:

- Changed USB micro-b to USB-C
- Swapped DCDC devices
- Added support for ECP5 85F-5G
- Added Castellated I/O pins

Installing tools directly didn't go as planned - ran into installation issues 0 0

> ſ && DEBIAN_FRONTEND=noninteractive apt-get -y install --no-install-recommends \ python3−pip \ && pip3 install wheel setuptools \ && pip3 install doit ∖ && apt-get autoclean && apt-get clean && apt-get -y autoremove \ && rm -rf /var/lib/apt/lists/* radiant vivado gowineda neorv32 quartus README.md

FROM gcr.io/hdl-containers/debian/bullseye/impl RUN apt-get update -qq \ ENV GHDL_PLUGIN_MODULE=ghdl WORKDIR tmp/src [~]\$ cd fosdem/2025/neorv32-setups [neorv32-setups]\$ ls CODE_OF_CONDUCT.md constraints LICENSE osflow cologne_chip [neorv32-setups]\$ docker run -v\$PWD:/tmp/src:z -it orangecrab-neorv32 bash -c 'make -C osflow/ BOARD =OrangeCrab MinimalBoot'

Creative Commons

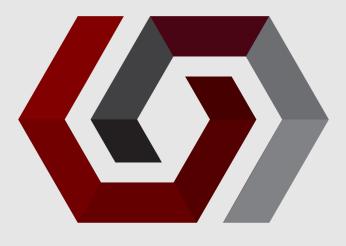
Decided to leverage container that is used as part of Github Actions build in repo

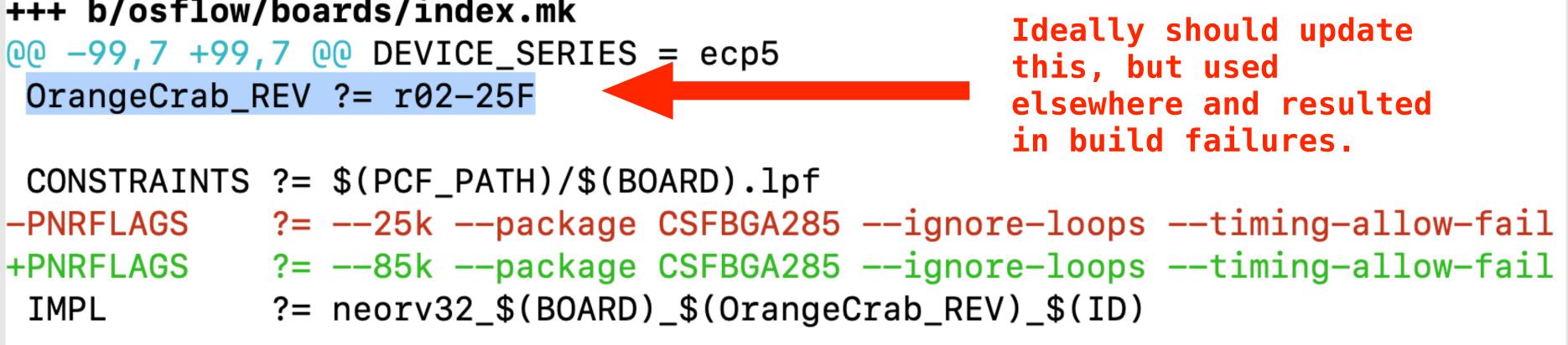
Enable DFU in RTL

[neorv32]\$ git diff diff --git a/rtl/core/neorv32_top.vhd b/rtl/core/neorv32_top.vhd index 1236ed22..6b5150cf 100644 --- a/rtl/core/neorv32_top.vhd +++ b/rtl/core/neorv32_top.vhd <u>00</u> -45,7 +45,7 00 entity neorv32_top is CPU_EXTENSION_RISCV_Zicond : boolean CPU_EXTENSION_RISCV_Zihpm : boolean CPU_EXTENSION_RISCV_Zmmul : boolean CPU_EXTENSION_RISCV_Zxcfu : boolean -CPU_EXTENSION_RISCV_Zxcfu : boolean H.

Creative Commons 💿 🛈

:= false;	implement integer conditional operations?
:= false;	implement hardware performance monitors?
:= false;	implement multiply-only M sub-extension?
:= false;	implement custom (instr.) functions unit?
:= true;	implement custom (instr.) functions unit?


Modify appropriate Makefile to inform tools of different FPGA


diff --git a/osflow/boards/index.mk b/osflow/boards/index.mk index 20ff948..fd09c43 100644 --- a/osflow/boards/index.mk +++ b/osflow/boards/index.mk 00 -99,7 +99,7 00 DEVICE_SERIES = ecp5 OrangeCrab_REV ?= r02-25F

CONSTRAINTS ?= \$(PCF_PATH)/\$(BOARD).lpf IMPL

endif

Creative Commons 💿 🛈

- After successfully built FPGA, used dfu-util to Flash FPGA
- Held button on power up to enter programming mode
- Attach device information to file
 - ocp neorv32_OrangeCrab_r02-25F_MinimalBoot.bit neorv32_OrangeCrab_r02-25F_MinimalBoot.dfu
 - neorv32_OrangeCrab_r02-25F_MinimalBoot.dfu
 - dfu-suffix -v 1209 -p 5af0 -a • dfu-util -a 0 -D neorv32_OrangeCrab_r02-25F_MinimalBoot.dfu

- **Bootloader working!** 0
- Compile Zephyr "Hello World" for RISC-V
 - west build -p -b neorv32 samples/hello_world/
- On power-up, hit any key over console to enter bootloader 0
- Use neorv32 script to upload binary 0
- Run into issue when attempting to flash application 0
 - https://stnolting.github.io/neorv32/

ERR_SIZE

Your program is way too big for the internal processor's instructions memory. Increase the memory size or reduce your application code.

Creative Commons

<< NEORV32 Bootloader >>

- BLDV: Jul 19 2024
- HWV: 0x01100209
- CLK: 0x016e3600
- MISA: 0x40800100
- XISA: 0x000008b
- 0x0013000d SOC:
- IMEM: 0x00004000
- DMEM: 0x00002000

Autoboot in 10s. Press any key to abort. Loading from SPI flash @0x00400000...

ERR_SIZE

Increase IMEM size

```
index 552a744..ed13551 100644
00 -102,7 +102,7 00 begin
  generic map (
    MEM_INT_IMEM_SIZE => 16*1024,
   MEM_INT_IMEM_SIZE => 32*1024,
+
    MEM_INT_DMEM_SIZE => 8*1024
   port map (
```

Creative Commons 💿 🛈

--- a/osflow/board_tops/neorv32_OrangeCrab_BoardTop_MinimalBoot.vhd +++ b/osflow/board_tops/neorv32_OrangeCrab_BoardTop_MinimalBoot.vhd

neorv32_inst: entity work.neorv32_ProcessorTop_MinimalBoot

CLOCK_FREQUENCY => f_clock_c, -- clock frequency of clk_i in Hz

- After re-building FPGA and re-uploading application, no "Hello World" :-(
- Try demo Blinky example under neorv32/sw
- Same issue 0
 - No indication of error
 - Console just sits there

Creative Commons 📀 🛈

NEXT STEPS

- Troubleshoot why application not loading
- What debugging tools available and how to debug?
 - Equivalent of JTAG/SWD and GDB in FPGA land?
 - Have used Xilinx ILA and Synopsys Identify
 - How to capture signals in Lattice?
 - Open source tools?
 - Necessary hardware connections to perform troubleshooting?

NEXT STEPS

- Get it working and generate comparison metrics in Zephyr
 - Present success at FOSDEM26 ?
- Integrate CFU intrinsic in Zephyr and upstream
- Investigate Custom Functions Subsystem 0
 - **CPU** independent operations

Creative Commons 💿 🛈

NEXT STEPS

- Try other hardware-accelerated functions
- **CFU** Playground
 - https://cfu-playground.readthedocs.io/ en/latest/
 - Different design/implementation
 - Meant for machine learning
 - Integrate with Zephyr and present results!
- **Custom Functions Subsystem**
 - **CPU** independent
 - Integrate with Zephyr and present results!

THANK YOU! **Mohammed Billoo MAB Labs Embedded Solutions FOSDEM25**

Creative Commons CC

