

Refactoring Sketcher in
FreeCAD

Ajinkya P. Dahale
2nd February, 2025

FOSDEM 2025

About FreeCAD

● Complete parametric 3D modeling tool, in
development since 2001

● Ability to model physical objects of any size
● For more detail, check out our stand in the AW

building (or https://freecad.org if watching
remotely)

https://freecad.org/

About Me

● FreeCAD contributor since 2016.
● Mainly focused on Sketcher, Part Design and

related topics.
● Presently also working as project staff at FOSSEE,

IIT Bombay (https://fossee.in)
● Occasionally available on most “professional”

social media: just search for “Ajinkya Dahale”

https://fossee.in/

Motivation
● Freecad is well over 20 years old
● Technical debt accumulates

– Multiple ad-hoc changes (bug based development)
– Many developers
– Spaghetti code: readability limited
– Changing standards (C++98 to C++20)

● Due for a clean up.
● (Mid-2024) 1.0 release preparations kept the code base stable

Why Sketcher?
0. Major portion of my FreeCAD contributions

1. First workbench a user encounters: the smallest of
details WILL be caught

2. Large percentage of issues

3. Yet larger percentage of complaints on FreeCAD Days

4. Has multiple parts including an “in-house” solver
(planegcs)

Method: The Basics
● Need some heuristic to prioritize and measure

progress
● Metric used: Cognitive Complexity (developed

by SonarSource)
● Mostly following “Refactoring” by Martin Fowler

et al and “Clean Code” by Bob Martin

Method: Documentation
● Know what each component is doing in the first

place
● Are there corner cases? Application-specific

decisions?

Method: Tests
● Need to make sure changes do not break

existing behaviour.
● Tests can automate this.
● Add as many tests as needed (possibly dozens

per method).

Method: Loops and Conditions
● Use modern C++ tools like ranged for and initialization within

if statements as far as possible
● As far as possible, avoid nesting of if statements and

for/while loops
● This includes the ternary operator “x?y:z”
● If needed, do not hesitate to repeat small bits of code (or

create a helper function and repeat that)
– This often comes into picture if one part of the condition is

significantly larger than the other, and, after exiting, the method
just wraps up and returns.

Methods: Helper functions
● As lambdas within the method or loose

functions outside.
● They also help identify opportunity for reuse.

Methods: Use algorithm library
● As far as possible, use the algorithm library in C++

to replace combinations of loops and conditionals.
● Some examples: copy(_if), (all/any/none)_of,

move, transform, (min/max)(_element), sort,
partition

● Even a for_each can be useful
– These methods also directly convey the intent
– Possible opportunity to parallelize

Methods: Breaking up classes
● Ongoing work to break down larger files, mainly

SketchObject.
● Towards following the Single responsibility

principle.

Challenges
● Limited Documentation
● Release done: floodgates of new PR, possibly

causing conflicts
● All of this makes refactoring an iterative process
● Also best done by all developers
● Know when to stop

– Is this code going to be changed again soon?

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15

