
Concurrency Testing using
Custom Linux Schedulers

timetableworld.com

Johannes Bechberger and Jake Hillion

Heisenbugs

Consider the following

Producer Consumer

Best-before Best-before

This never crashes except when it does

Producer Consumer

Best-before Best-before

This is related to
scheduling

What is scheduling?

Process A Process B

CPU 1

...

CPU 2 ...

Process A Process B

CPU

Time

Process A Process B

CPU

A

Time

Process A Process B

CPU

A

Time

Process A Process B

CPU

A

Time

B

Process A Process B

CPU

A

Time

B A

Process A Process B

CPU

A

Time

B A A

Process A Process B

CPU

A

Time

B A BA

Process A Process B

CPU

A

Time

B A BA A

Standard schedulers
are too good

We need an erratic
scheduler!!!

Let's create our own

Let's create our own
without Kernel Development

Let's create our own
in Java (or Rust)

Let's create our own

+ +

eBPF is a crazy
technology, it’s like
putting JavaScript into
the Linux kernel

Brendan Gregg

“
https://www.youtube.com/watch?v=tDacjrSCeq4

eBPF is a crazy
technology, it’s like
putting JavaScript into
the Linux kernel

Brendan Gregg

“
https://www.facesofopensource.com/brendan-gregg/

Courtesy of Mohammed Aboullaite

eBPF runtime

Courtesy of Mohammed Aboullaite

eBPF runtime

Courtesy of Mohammed Aboullaite

Here comes
sched-ext

1.Ease of experimentation
and exploration

2.Customization
3.Rapid scheduler

deployments

https://lwn.net/Articles/978911/

“

Process A

CPU 1

Local Queue

CPU 2

Local Queue

Global Queue

Scheduler

...

...
Scheduler dance

@BPF(license = "GPL")
public abstract class SampleScheduler
 extends BPFProgram implements Scheduler, Runnable {

 static final long SHARED_DSQ_ID = 0;

 @Override
 public int init() {
 return scx_bpf_create_dsq(SHARED_DSQ_ID, -1);
 }

}

@BPF(license = "GPL")
public abstract class SampleScheduler {

 @Override
 public void enqueue(Ptr<task_struct> p,
 long enq_flags) {
 scx_bpf_dispatch(p, SHARED_DSQ_ID,
 5_000_000, enq_flags);
 }

}

@BPF(license = "GPL")
public abstract class SampleScheduler {

 @Override
 public void dispatch(int cpu,
 Ptr<task_struct> prev) {
 scx_bpf_consume(SHARED_DSQ_ID);
 }

}

Produce erratic
scheduling orders

Demo

https://github.com/parttimenerd/concurrency-fuzz-scheduler

Demo

https://github.com/parttimenerd/concurrency-fuzz-scheduler

Highly Experimental

timetableworld.com

Fin.

Johannes Bechberger
mostlynerdless.de
OpenJDK Developer, SAP

concurrency-fuzz-scheduler
Jake Hillion

hillion.co.uk
scx Developer, Meta

