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What | do

| work on Futhark, a data parallel functional programming language.

def add_two [n] (a: [n]1i32) : [n]1i32 = map (+2) a
def sum [n] (a: [n]1i32): 132 = reduce (+) 0 a
def sumrows [n][m] (as: [n][m]i32): [n]i32 = map sum as

Main claim to fame is compilation to GPU code, meaning Futhark programs are
(hopefully) pretty fast.
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Three production-quality GPU backends

OpenCL

= Open standard, actively maintained.

= |mplemented to various degrees by NVIDIA, AMD, Intel, etc...

CUDA

= Proprietary NVIDIA standard.
= Dominant position within GPGPU.

HIP
= Reimplementation of CUDA API by AMD.

Very similar—so what are the performance differences for equivalent code, and
why?



Experimental performance investigation

Basic idea: compile Futhark benchmark programs with various backends and run on
various GPUs and see how fast they are.

On NVIDIA A100
Compare OpenCL and CUDA backends.

On AMD MI100
Compare OpenCL and HIP backends.

48 benchmarks from published benchmark suites (Accelerate, PBBS, Rodinia, Parboil).
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Cause: Numerical defaults for single-precision floating point

OpenCL allows fast-but-wrong division and square roots by default.

= Disabled by —c1-fp32-correctly-rounded-divide-sqgrt.
A100 - OpenCL/CUDA
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Cause: Different scan implementations

OpenCL does not allow the implementation of the decoupled lookback scan
algorithm.

» Depends on subtle memory model and progress guarantees.!
» Not provided by OpenCL spec.

= Might be possible to implement, but | have not seen anyone make it work.

A100 - OpenCL/CUDA MI100 — OpenCL/HIP

maximalMatching + 0.73 convexhull L 1.03
maximallndependentSet :[‘H 0.72 nbody-bh + 0.96
convexhull | 0.70 maximallndependentSet l-{- 0.94
breadthFirstSearch T—? 0.67 maximalMatching + 0.92
nbody-bh H 0.60 breadthFirstSearch >—{—< 0.90

¥ © © o NI © ® ¥ © 0 o NI © ®

O O O +H = = = O O O H = ~+H ~

! Single-pass Parallel Prefix Scan with Decoupled Look-back, NVIDIA Technical Report



Cause: Smaller thread blocks

On AMD GPUs, OpenCL thread blocks are limited to 256 threads.

= May originally have been hardware limit.
= | imit does not exist with HIP, so modern hardware is clearly capable.
» Fine print applies.
= Affects workloads that benefit from significant amount of intra-group/block
communication.

MI100 — OpenCL/HIP
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Cause: Imprecise cache information

No predictable way to query L2 cache size on OpenCL.

= CL.DEVICE_GLOBAL_MEM_CACHE_SIZE
> L2 on NVIDIA, L1 on AMD.

= Affects generalised histograms, which uses the cache size in a formula that
balances locality and redundant work.?

MI100 — OpenCL/HIP
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Cause: Imprecise thread information

OpenCL does not provide information on how many threads fit on the GPU.

= Futhark makes a heuristic guess instead (1024 per compute unit).
» Generally smaller than the CUDA /HIP-queried number.

= No guarantee that the “correct” number is better than heuristic.

A100 - OpenCL/CUDA MI100 - OpenCL/HIP
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Cause: API overhead

For some benchmarks, the performance difference is not attributable to any
measurable GPU operations.

= Enqueuing GPU operations can be relatively costly.
= Only affects workloads with very small absolute runtimes.
» E.g. 250us for trace on MI100 with OpenCL.
» See variance for nbody on A100 - a single tiny workload.
= Generally OpenCL is slower, but there are exceptions.
A100 - OpenCL/CUDA
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Cause: Bounds checking

Bounds checking is done with a program transformation that induces somewhat
unusual control flow, which sometimes negatively affects the kernel compiler.3

= /bm is most affected benchmark.

» Not clear why it is so sensitive.
= Surprisingly not consistent whether OpenCL is the one that gets slower.
MI100 — OpenCL/HIP
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Probably a cause somewhere: Inexplicable behaviour

Sometimes the GPU kernels are just slower for reasons that | am unable to
identify.

= Performance difference is clearly due to certain compute-bound kernels.
= | suspect minor differences in register allocation or similar.
MI100 — OpenCL/HIP
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Can we solve some of these issues?

® Pass —cl-fp32-correctly-rounded-divide—-sqgrt to OpenCL.

= Manually provide hardware information.
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Conclusions

= |t is not difficult to target all of OpenCL, CUDA, and HIP.
» Assuming you don't need fancy features like dynamic parallelism, tensor cores, warp
level operations, ...
» Probably also the related similar APls.
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Conclusions

= |t is not difficult to target all of OpenCL, CUDA, and HIP.

» Assuming you don't need fancy features like dynamic parallelism, tensor cores, warp
level operations, ...
» Probably also the related similar APls.
= Performance portability is tricky.
» Different kernel compiler defaults.
» OpenCL fails to expose some hardware features.
» The kernel compilers do their own thing.
= |f you only care about NVIDIA/AMD GPUs, targeting OpenCL is perhaps not
worth it.
» Just do CUDA and HIP, they are very similar.

Experimental setup: https://github.com/diku—-dk/futhark-fproper24
Futhark website: https://futhark-lang.org
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