A Comparison of OpenCL, CUDA, and HIP as Compilation

Targets for a Functional Array Language

Troels Henriksen

Troels Henriksen
University of Copenhagen
athas@sigkill.dk
gopher:/ /sigkill.dk

FOSDEM 2025



What | do

| work on Futhark, a data parallel functional programming language.

def add_two [n] (a: [n]1i32) : [n]1i32 = map (+2) a
def sum [n] (a: [n]1i32): 132 = reduce (+) 0 a
def sumrows [n][m] (as: [n][m]i32): [n]i32 = map sum as

Main claim to fame is compilation to GPU code, meaning Futhark programs are
(hopefully) pretty fast.



Three production-quality GPU backends

= Open standard, actively maintained.

= |mplemented to various degrees by NVIDIA, AMD, Intel, etc...



Three production-quality GPU backends

= Open standard, actively maintained.

= |mplemented to various degrees by NVIDIA, AMD, Intel, etc...

CUDA

= Proprietary NVIDIA standard.
= Dominant position within GPGPU.



Three production-quality GPU backends

OpenCL

= Open standard, actively maintained.

= |mplemented to various degrees by NVIDIA, AMD, Intel, etc...

CUDA

= Proprietary NVIDIA standard.
= Dominant position within GPGPU.

HIP
= Reimplementation of CUDA API by AMD.



Three production-quality GPU backends

OpenCL

= Open standard, actively maintained.

= |mplemented to various degrees by NVIDIA, AMD, Intel, etc...

CUDA

= Proprietary NVIDIA standard.
= Dominant position within GPGPU.

HIP
= Reimplementation of CUDA API by AMD.

Very similar—so what are the performance differences for equivalent code, and
why?



Experimental performance investigation

Basic idea: compile Futhark benchmark programs with various backends and run on
various GPUs and see how fast they are.

On NVIDIA A100
Compare OpenCL and CUDA backends.

On AMD MI100
Compare OpenCL and HIP backends.

48 benchmarks from published benchmark suites (Accelerate, PBBS, Rodinia, Parboil).



A100 - OpenCL vs CUDA

nbody
trace

ray

tunnel

cfd
particlefilter
mandelbrot
nn

hotspot
myocyte

pagerank

histogram
bfs_filt_padded_fused
histo
bfs_asympt_ok_but_slow
bfs_iter_work_ok
bfs_heuristic

backprop
radix_sort:sort_i32
maximalMatching
maximallndependentSet
convexhull

Ibm

breadthFirstSearch
nbody-bh

0.4

¥
§
i
+
-
i
i
I
+
H
_z*
«Z.cqqm.w.w.w.
O o 4 A A A A

1.43
1.32
1.22
1.21
1.19
1.16
1.16
1.16

1.10

0.84
0.83
0.83
0.82
0.81
0.81
0.79
0.79
0.76
0.73
0.72
0.70

0.67
0.60

MI100 — OpenCL vs HIP

mandelbrot
quick_sort:sort_f64
nbody

hashcat
LocVolCalib

srad

Ibm

OptionPricing
myocyte

radix sort:sort i32

hotspot
nw
bfs_iter_work_ok
sgemm
cfd

histo
histogram
nn

canny

fft

trace
smoothlife
tpacf

fluid
tunnel

et

1T

| ]
ST

=

<+ ©
o o

0.8

1.0
1.2
1.4
1.6
1.8

1.71
1.53
1.36
1.30
1.24
1.18
1.16
1.15

1.03

0.84
0.82
0.79
0.78
0.78
0.78
0.77
0.73
0.72
0.70
0.70
0.67
0.60
0.58
0.42



Cause: Numerical defaults for single-precision floating point

OpenCL allows fast-but-wrong division and square roots by default.

= Disabled by —c1-fp32-correctly-rounded-divide-sqgrt.
A100 - OpenCL/CUDA

nbody
trace
ray
tunnel

mandelbrot

I

|

==

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

1.43
1.32
1.22
1.21
1.16

MI100 — OpenCL/HIP

mandelbrot
nbody

171

1.36

<
S

© ®
S o

|

|
e N S v ®
A oA A A



Cause: Different scan implementations

OpenCL does not allow the implementation of the decoupled lookback scan
algorithm.

» Depends on subtle memory model and progress guarantees.!
» Not provided by OpenCL spec.

= Might be possible to implement, but | have not seen anyone make it work.

A100 - OpenCL/CUDA MI100 — OpenCL/HIP

maximalMatching + 0.73 convexhull L 1.03
maximallndependentSet :[‘H 0.72 nbody-bh + 0.96
convexhull | 0.70 maximallndependentSet l-{- 0.94
breadthFirstSearch T—? 0.67 maximalMatching + 0.92
nbody-bh H 0.60 breadthFirstSearch >—{—< 0.90

¥ © © o NI © ® ¥ © 0 o NI © ®

O O O +H = = = O O O H = ~+H ~

! Single-pass Parallel Prefix Scan with Decoupled Look-back, NVIDIA Technical Report



Cause: Smaller thread blocks

On AMD GPUs, OpenCL thread blocks are limited to 256 threads.

= May originally have been hardware limit.
= | imit does not exist with HIP, so modern hardware is clearly capable.
» Fine print applies.
= Affects workloads that benefit from significant amount of intra-group/block
communication.

MI100 — OpenCL/HIP

lud T+ 0.91

nw —— 0.82
sgemm % 0.78
fft 0.70
smoothlife ——H 0.67

< o N <% © ®
o — A A A A

©
o o



Cause: Imprecise cache information

No predictable way to query L2 cache size on OpenCL.

= CL.DEVICE_GLOBAL_MEM_CACHE_SIZE
> L2 on NVIDIA, L1 on AMD.

= Affects generalised histograms, which uses the cache size in a formula that
balances locality and redundant work.?

MI100 — OpenCL/HIP

histo L 0.78
histogram I 0.77
tpacf 0.60

S e oaenN¥ ©®

O O O = = = ~

2Compiling Generalized Histograms for GPU, SC'20



Cause: Imprecise thread information

OpenCL does not provide information on how many threads fit on the GPU.

= Futhark makes a heuristic guess instead (1024 per compute unit).
» Generally smaller than the CUDA /HIP-queried number.

= No guarantee that the “correct” number is better than heuristic.

A100 - OpenCL/CUDA MI100 - OpenCL/HIP
hashcat + 1.30
histogram<ﬁ—l—i—i—}g u|00.83 myocyte + 1.08

T 0 ®oN<TO®
O O O = = ~ ~ -



Cause: API overhead

For some benchmarks, the performance difference is not attributable to any
measurable GPU operations.

= Enqueuing GPU operations can be relatively costly.
= Only affects workloads with very small absolute runtimes.
» E.g. 250us for trace on MI100 with OpenCL.
» See variance for nbody on A100 - a single tiny workload.
= Generally OpenCL is slower, but there are exceptions.
A100 - OpenCL/CUDA

MI100 — OpenCL/HIP
l
nbody % 1.43 cfd L 078
T nn + 0.73
sgemm | 0.92 trace + 0.70
¥ 9 oA s ©o® <

©®moNTO®
O O = ™~ ~ ~



Cause: Bounds checking

Bounds checking is done with a program transformation that induces somewhat
unusual control flow, which sometimes negatively affects the kernel compiler.3

= /bm is most affected benchmark.

» Not clear why it is so sensitive.
= Surprisingly not consistent whether OpenCL is the one that gets slower.
MI100 — OpenCL/HIP

A100 - OpenCL/CUDA
T e e |

o N T 9 ®
~ ~ o~ o~

1.16

5 Q@ {
c o o —

3Bounds Checking on GPU, HLPP'20



Probably a cause somewhere: Inexplicable behaviour

Sometimes the GPU kernels are just slower for reasons that | am unable to
identify.

= Performance difference is clearly due to certain compute-bound kernels.
= | suspect minor differences in register allocation or similar.
MI100 — OpenCL/HIP

LocVolCalib 1.24
OptionPricing i 1.15
tunnel 0.42

S Qoo NS O ®

O O O ™~ ™~ ~ ~ ™~



Can we solve some of these issues?

® Pass —cl-fp32-correctly-rounded-divide—-sqgrt to OpenCL.

= Manually provide hardware information.



A100 - OpenCL/CUDA

ray
particlefilter

histo

nn

xsbench
minSpanningForest
kmeans
maximalMatching
OptionPricing

mri-a

breadthFirstSearch
LocVolCalib
bfs_heuristic
bfs_iter_work_ok
lud

backprop
radix_sort:sort_i32
cfd
fs_asympt_ok_but_slow
nbody

canny

trace

convexhull

Ibm

nbody-bh

T
T

il

|

1.20
1.16
1.08
1.05
1.05
1.05
1.04
1.03
1.02
1.00

0.4
0.6
0.8

1.0

1.2

1.4

1.6

MI100 — OpenCL/HIP

quick_sort:sort_f64
OptionPricing
LocVolCalib

lbm

mandelbrot
hashcat

myocyte

srad

kmeans

pagerank

pathfinder
bfs_heuristic
hotspot
bfs_iter_work_ok
histo

crystal
breadthFirstSearch
histogram

nw

tpacf

trace

canny

fluid

nn

tunnel

f
i
i
=
i
T
b
+
/
|
y
.+.
i



Conclusions

= |t is not difficult to target all of OpenCL, CUDA, and HIP.
» Assuming you don't need fancy features like dynamic parallelism, tensor cores, warp
level operations, ...
» Probably also the related similar APls.


https://github.com/diku-dk/futhark-fproper24
https://futhark-lang.org

Conclusions

= |t is not difficult to target all of OpenCL, CUDA, and HIP.

» Assuming you don't need fancy features like dynamic parallelism, tensor cores, warp
level operations, ...
» Probably also the related similar APls.
= Performance portability is tricky.
» Different kernel compiler defaults.
» OpenCL fails to expose some hardware features.
» The kernel compilers do their own thing.
= |f you only care about NVIDIA/AMD GPUs, targeting OpenCL is perhaps not
worth it.
» Just do CUDA and HIP, they are very similar.

Experimental setup: https://github.com/diku—-dk/futhark-fproper24
Futhark website: https://futhark-lang.org


https://github.com/diku-dk/futhark-fproper24
https://futhark-lang.org

