
MicroPython -
Python for microcontrollers

and Embedded Linux
with focus on sensor-oriented applications

https://github.com/emlearn/emlearn-micropython

FOSDEM 2025, Brussels
Embedded devroom

Jon Nordby jononor@gmail.com

https://github.com/emlearn/emlearn-micropython
mailto:jononor@gmail.com

Goal
Purpose of this presentation

You as an
embedded / software developer
(professional or hobbyist)

will learn enough about MicroPython

to consider it for a future project

“Internet of Things”

Focus: Sensor node systems

1) Read sensors –> 2) Process data * –> 3) Transmit/act on data data
* including Digital Signal Processing (DSP) and Machine Learning (ML)

Robotics,
Industrial automation

“Wearable devices”

Activity
tracker

Environment
logger

Noise
monitor

Image
Classifier

Temperature Accelerometer Microphone Camera

if is_MyCat(img):
 open_door()

Random Forest
classifier
emlearn_trees

Infinite Impulse
Response filters
emlearn_iir

Convolutional
Neural Network
emlearn_cnn

Outline / agenda

1. MicroPython project overview
2. Tour of MicroPython features

○ …
○ Sensor communication
○ Connectivity
○ Native C modules for efficient data processing

3. Sensors using Digital Signal
4. MicroPython on (Embedded) Linux

MicroPython
introduction Jumping right into it

MicroPython introduction

Started in 2014

For devices with 64 kB+ RAM (256 kB+ recommended)
Supports 8+ microcontroller families

Tries to be as compatible with CPython as possible, within constraints.
Python 3.6 mostly implemented, partial after that.

Package manager “mip install”
Has support for loading C modules at runtime!

More info: https://micropython.org

https://micropython.org

Hardware recommendation
- start with a ESP32 device

Complete device with sensors etc.: 20 - 50 USD
Development boards: 5 - 20 USD
Chips / modules 1 - 5 USD

Installing MicroPython

Download prebuilt firmware
https://micropython.org/download/?port=esp32

Flash firmware to device
pip install esptool

esptool.py --chip esp32 --port … erase_flash
esptool.py --chip esp32 --port … write_flash -z 0 micropython-v1.17.bin

Connect to device
pip install mpremote
mpremote repl

IDE (optional): Viper IDE, Thonny, VS Code, et.c.

https://micropython.org/download/?port=esp32

1. Read the sensor in a loop

2. Send data using MQTT

3. Wait until next measurement

The same approach usable for other
slow-changing phenomena

Using https://viper-ide.org/ with
Chromium

Zero-install. Connect to device via USB

Using peterhinch/micropython-mqtt
and jonnor/micropython-mpu6886

Temperature sensor
- code

https://viper-ide.org/
https://github.com/peterhinch/micropython-mqtt/blob/master/mqtt_as/main.py
https://github.com/jonnor/micropython-mpu6886/

https://pyscript.net/
MicroPython REPL on frontpage

Try it now - running in the browser!

https://wokwi.com/micropython
Brower-based simulator

https://pyscript.net/
https://wokwi.com/micropython

MicroPython
tour

High degree of compatibility - but never 100%
Continuous job to keep up with CPython
Some differences inherent - from < 1 MB RAM and FLASH

Included libraries are minimal
micropython-lib has more extensisive/featured
https://github.com/micropython/micropython-lib

Known incompatibilities
https://docs.micropython.org/en/latest/genrst/index.html
#micropython-differences-from-cpython

Not implemented (by CPython major release)
https://github.com/micropython/micropython/issues/
7919#issuecomment-1025221807

No CFFI or C module compatibility!
But there is another C API

Garbage collected
One GC cycle will take 1-10 ms (typ)
Some control, limited (gc module)

TLDR:

● Will be very familiar to Python devs
● Small scripts will mostly work with

minor mods.
● Larger programs/modules may need

refactoring or rewrite to fit target

MicroPython is Python - but not CPython

https://github.com/micropython/micropython-lib
https://docs.micropython.org/en/latest/genrst/index.html#micropython-differences-from-cpython
https://docs.micropython.org/en/latest/genrst/index.html#micropython-differences-from-cpython
https://github.com/micropython/micropython/issues/7919#issuecomment-1025221807
https://github.com/micropython/micropython/issues/7919#issuecomment-1025221807

https://docs.micropython.org/en/latest/library/machine.html
Hardware Abstraction Layer
for microcontroller peripherals

Same on all hardware/ports
* with exceptions

Hardware access - the machine module

https://docs.micropython.org/en/latest/library/machine.html

Enabled on most ports/hardware
(with sufficient resources)

Internal FLASH and/or SDCard

LittleFS or FAT32

Save/load from standard files

https://docs.micropython.org
/en/latest/reference/filesystem.html

Tool for PC <-> microcontroller communication

https://docs.micropython.org
/en/latest/reference/mpremote.html

Copy from device

mpremote cp -r :images/ ./data/

Copy to device

mpremote cp ./model.trees.csv ./models/

File system

Using micropython-npyfile to read/write Numpy .npy files
https://github.com/jonnor/micropython-npyfile/

mpremote

https://docs.micropython.org/en/latest/reference/filesystem.html
https://docs.micropython.org/en/latest/reference/filesystem.html
https://docs.micropython.org/en/latest/reference/mpremote.html
https://docs.micropython.org/en/latest/reference/mpremote.html
https://github.com/jonnor/micropython-npyfile/

mip - package manager

Install from micropython-lib

mpremote install requests

Third party packages

mpremote install github:jonnor/micropython-zipfile

Can run directly on device *

import mip
mip.install(‘requests’)

* Assuming device has Internet over WiFi/Ethernet

Install native C modules at runtime

mpremote mip install
https://example.net/
xtensawin_6.2*/emlearn_trees.mpy

* Specify architecture + MicroPython ABI version

https://example.net/

BLE - Bluetooth Low Energy
aioble - high-level application API, asyncio
bluetooth - low-level hardware-layer
Ports: ESP32, RP2, Unix

WiFi
network.WLAN
Ports: ESP32, RP2, STM32, etc

Ethernet
network.LAN
Ports: ESP32, RP2, STM32, etc
Hardware: Wiznet, +++

Connectivity

https://github.com/micropython/micropython-lib/blob/master/micropython/bluetooth/aioble/README.md
https://docs.micropython.org/en/latest/library/bluetooth.html
https://docs.micropython.org/en/latest/library/network.WLAN.html
https://docs.micropython.org/en/latest/library/network.LAN.html

C modules *

Defines a Python module with API.
functions/classes et.c.

Implemented by users,
libraries, or be part of
MicroPython core.

Can be portable or
hardware/platform specific

* Or other language which
compiles to C, or exposes C API
https://github.com/
vshymanskyy/wasm2mpy
C++, Rust, Zig, TinyGo, TypeScript

https://github.com/vshymanskyy/wasm2mpy
https://github.com/vshymanskyy/wasm2mpy

Native module (.mpy) VS External C module

Native module External C module

Installable at runtime Yes, as .mpy file No. Must be included in
firmware image

Requires SDK/toolchain No (only to build) Yes

Code executes from RAM FLASH

Limitations No libc / libm linked *
No static BSS *

None

Maturity Low * Excellent

Documentation https://docs.micropython.org/
en/latest/develop/natmod.html

https://docs.micropython.org/
en/latest/develop/cmodules.html

* Improved greatly in upcoming MicroPython (1.25+).
Contributions by Volodymyr Shymanskyy, Alessandro Gatti, Damien George, and others

https://docs.micropython.org/en/latest/develop/natmod.html
https://docs.micropython.org/en/latest/develop/natmod.html
https://docs.micropython.org/en/latest/develop/cmodules.html
https://docs.micropython.org/en/latest/develop/cmodules.html

Audio input - machine.I2S

Digital microphone or external audio ADC

Can be done using I2S protocol

On ports ESP32, STM32, RP2, NRF52

PDM protocol not supported :(

Example code
https://github.com/emlearn/emlearn-micropython/
tree/master/examples/soundlevel_iir
https://github.com/miketeachman/micropython-i2s-examples

https://github.com/emlearn/emlearn-micropython/tree/master/examples/soundlevel_iir
https://github.com/emlearn/emlearn-micropython/tree/master/examples/soundlevel_iir
https://github.com/miketeachman/micropython-i2s-examples

Camera input

Not part of standard APIs yet

micropython-camera-API
Proposed API and implementation
(ESP32 only, for now)
https://github.com/
cnadler86/micropython-camera-API

OpenMV
https://openmv.io/
Custom MicroPython distribution
Focused on Computer Vision / Machine Vision

https://github.com/cnadler86/micropython-camera-API
https://github.com/cnadler86/micropython-camera-API
https://openmv.io/

Sensor nodes
with MicroPython

and emlearn
https://github.com/
emlearn/emlearn-micropython

https://github.com/emlearn/emlearn-micropython
https://github.com/emlearn/emlearn-micropython

Noise sensor using emlearn_iir

Complete example code
https://github.com/emlearn/emlearn-micropython/
tree/master/examples/soundlevel_iir

Using machine.I2S
16 kHz samplerate

A weighting implemented with
Infinite Impulse Response (IIR) filter

emlearn_iir
25% CPU usage total

pure MicroPython
900% CPU - not feasible

https://github.com/emlearn/emlearn-micropython/tree/master/examples/soundlevel_iir
https://github.com/emlearn/emlearn-micropython/tree/master/examples/soundlevel_iir

Human Activity Detection with emlearn_trees

Performance comparison
10 trees, max 100 leaf nodes, “digits” dataset

 Inference time Program space

m2cgen 60.1 ms 179 kB
everywhereml 17.7 ms 154 kB
emlearn 1.3 ms 15 kB

emlearn is 10x faster and 10x more space efficient
compared to generating Python code

Using Random Forest classifier trained with scikit-learn

https://github.com/emlearn/emlearn-micropython
/tree/master/examples/har_trees

https://github.com/emlearn/emlearn-micropython/tree/master/examples/har_trees
https://github.com/emlearn/emlearn-micropython/tree/master/examples/har_trees

Image classification with emlearn_cnn

Convolutional Neural Network (CNN)

Running on ESP32-S3 (example)

Input dimensions: 32x32 px - 96x96 px
Layers: 3 - 4 layers.
Framerate: 1 - 10 FPS

Complete example code
https://github.com/emlearn/emlearn-micropython/
tree/master/examples/mnist_cnn

https://github.com/emlearn/emlearn-micropython/tree/master/examples/mnist_cnn
https://github.com/emlearn/emlearn-micropython/tree/master/examples/mnist_cnn

MicroPython for
Embedded Linux

Motivation: Memory efficiency

CPython is quite RAM hungry. Especially “standard” Python/PyData ecosystem

scikit-learn with CPython: 13 - 128 MB

 from sklearn.ensemble import RandomForestClassifier
 estimator = RandomForestClassifier()
 # model not even trained yet!!!

emlearn_trees with MicroPython: 0.1 - 6 MB
100 trees, 4000 nodes per tree (max_depth=12)

import emlearn_trees
model = emlearn_trees.new(100, 4000, 100)

MicroPython attractive for Linux devices with < 512 MB RAM

Unix MicroPyton port: Limited hardware access

Not implemented:

● GPIO. machine.Pin / machine.PWM / machine.ADC
● Digital busses. machine.I2C / SPI / USART / USB
● Watchdog Timer. machine.WDT
● Power management. machine.lightsleep() /deepsleep()
● Audio input/microphone
● Camera access

C or Python modules for this. Or call external programs.
Contributions welcome!

Already very useful for unit testing

Summary

https://github.com/
emlearn/emlearn-micropython

https://github.com/emlearn/emlearn-micropython
https://github.com/emlearn/emlearn-micropython

Take aways

1. MicroPython productive environment (for sensor devices)
Python familiarity and ease-of-use
Good connectivity
mip package manager
mpremote tool for device communication

2. Can implement advanced processing of sensor data
Accelerometer, audio, image, radar, ….
C modules a killer feature
emlearn-micropython: modules for DSP and Machine Learning

More!
FOSDEM 2025 - Low-level AI Engineering and Hacking - Sunday 16:40 (Lameere)

Milliwatt sized machine learning on microcontrollers with emlearn

FOSDEM 2025 - MicroPython & Espruino stand - AW building, level 1
See you there after this talk / later today?!

Official documentation
https://micropython.org/ https://emlearn-micropython.readthedocs.io

PyCon Berlin 2024: Machine Learning on microcontrollers using MicroPython and emlearn
https://www.youtube.com/watch?v=S3GjLr0ZIE0

TinyML EMEA 2024: emlearn - scikit-learn for microcontrollers and embedded systems
https://www.youtube.com/watch?v=LyO5k1VMdOQ

PyData ZA 2024: Sensor data processing on microcontrollers with MicroPython (video soon)
https://za.pycon.org/talks/31-sensor-data-processing-on-microcontrollers-with-micropython/

https://fosdem.org/2025/schedule/event/fosdem-2025-4524-milliwatt-sized-machine-learning-on-microcontrollers-with-emlearn/
https://micropython.org/
https://emlearn-micropython.readthedocs.io
https://www.youtube.com/watch?v=S3GjLr0ZIE0
https://www.youtube.com/watch?v=LyO5k1VMdOQ
https://za.pycon.org/talks/31-sensor-data-processing-on-microcontrollers-with-micropython/

MicroPython -
Python for microcontrollers

and Embedded Linux
with focus on sensor-oriented applications

https://github.com/emlearn/emlearn-micropython

FOSDEM 2025, Brussels
Embedded devroom

Jon Nordby jononor@gmail.com

https://github.com/emlearn/emlearn-micropython
mailto:jononor@gmail.com

Bonus

ML on streams: Continuous classification

The sensor data stream
is sliced into overlapping windows.
Each window processed independently

Exercise activity detection:
- 4 second window, every 1 second
- 100 Hz samplerate
- Processing time 200 ms

Raw sensor data Features ClassPreprocess Model

Implementing an IMU/accelerometer/gyro driver? Use the FIFO!
https://github.com/orgs/micropython/discussions/15512

[42, 4002, … , 329] “Jumping Jacks”

https://github.com/orgs/micropython/discussions/15512

Sound sensor - IIR filter

Standard sound level measurements are
A-weighted. To approximate human hearing.

Typically, implemented using
Infinite Impulse Response (IIR) filters.

1100 ms 900% CPU
Native emitter
Float

Too slow by ~10x

Sound sensor - IIR filter

Using emliir.mpy native module helps a lot.

BUT - conversion from float/int16 too slow
Also needs a native module

emliir.mpy from emlearm-micropython
https://github.com/emlearn/emlearn-micropython/

But need to convert data types
Adds 70ms+ with
micropython.native
Too slow! Total > 100 ms
Must create native module

IIR filter only
Using emliir.mpy
native module
30 ms 20% CPU - OK

https://github.com/emlearn/emlearn-micropython/

TinyML for MicroPython - comparisons

Project Deployment Models Program size Compute time

emlearn Easy. Native mod .mpy DT, RF,
KNN, CNN

Good Good

everywhereml Easy. Pure Python .py DT, RF,
SVM, KNN,

High with large
models

Poor

m2cgen Easy. Pure Python .py DT, RF,
SVM, KNN, MLP

High with large
models

Poor

OpenMV.tf Hard. Custom Fork CNN High initial size Good

ulab Hard. User C module (build-your-own)
Using ndarray
primitives

High initial size Unknown
(assume good)

Optimize if needed
Start with simple techniques
Go more advanced if needed

time.time and assert
for benchmark and tests

Make it Work,
Make it Right,
Make it Fast

– Ken Beck

Write simple automated tests,
Code in straightforward Python,
Measure performance with benchmarks

Inline Assembly

MicroPython can expose Assembler opcodes
as Python statements.

Allows to write a function in Assembler
inline in the Python program
Can compile and execute on device

Supported on ARM Cortex M chips
Not supported (yet) on ESP32

For the most hardcore hackers!

Official Documentation:
https://docs.micropython.org/en/latest/
reference/asm_thumb2_index.html Example: FIR filter implementation (cut out)

https://github.com/peterhinch/micropython-filters/
blob/master/fir.py

https://docs.micropython.org/en/latest/reference/asm_thumb2_index.html
https://docs.micropython.org/en/latest/reference/asm_thumb2_index.html
https://github.com/peterhinch/micropython-filters/blob/master/fir.py
https://github.com/peterhinch/micropython-filters/blob/master/fir.py

Training model on dataset

Using a scikit-learn based pipeline.

Setup subject-based cross validation
splitter = GroupShuffleSplit(n_splits=n_splits, test_size=0.25,
 random_state=random_state)

Random Forest classifier
clf = RandomForestClassifier(random_state = random_state,
 n_jobs=1, class_weight = "balanced")

Hyper-parameter search
search = GridSearchCV(clf, param_grid=hyperparameters,
 scoring=metric, refit=metric, cv=splitter)
search.fit(X, Y, groups=groups)

import emlearn
converted = emlearn.convert(clf)
converted.save(name='gesture', format=’csv’, file='model.csv')

har_train.py

Activity Tracker - Feature Extraction

Statistical summarizations are useful time-series features,
sufficient for basic Human Activity Recognition.

https://github.com/emlearn/emlearn-micropython
/blob/master/examples/har_trees/timebased.py

Time-based features extraction
Are Microcontrollers Ready for Deep
Learning-Based Human Activity Recognition?
Atis Elsts, and Ryan McConville
https://www.mdpi.com/2079-9292/10/21/2640

! Preprocessing must be compatible
between training on host PC (CPython) and device (MicroPython)

Solution: Write preprocessor for MicroPython, re-use in Python

 subprocess(‘micropython preprocess.py data.npy features.npy’)

Alternative: (when using common MicroPython/CPython subset)

 import mypreprocessor.py

Using micropython-npyfile to read/write Numpy .npy files
https://github.com/jonnor/micropython-npyfile/

https://github.com/emlearn/emlearn-micropython/blob/master/examples/har_trees/timebased.py
https://github.com/emlearn/emlearn-micropython/blob/master/examples/har_trees/timebased.py
https://www.mdpi.com/2079-9292/10/21/2640
https://github.com/jonnor/micropython-npyfile/

What is a microcontroller?

Espressif ESP32-S3FH4R2 chip: 2.5 USD
Waveshare ESP32-S3-Tiny board: 6 USD

Modern microcontroller:
A complete programmable System-on-Chip

Example: ESP32-S3FH4R2

32 bit CPU, 240 Mhz
Floating Point Unit
2 MB RAM
4 MB FLASH

WiFi
Bluetooth Low Energy
USB-C

Microcontroller - tiny programmable chip

Over 20 billions shipped per year!

Increasingly accessible for hobbyists

2010: Arduino Uno
2014: MicroPython
2019: MicroPython 1.10 - ESP32 PSRAM

Compute power: 1 / 1000x of a smartphone

● RAM: 0.10 - 1 000 kB
● Program space: 1.0 - 10 000 kB
● Compute 10 - 1 000 DMIPS
● Price: 0.10 - 10 USD
● Energy: 1 - 1 000 milliWatt

Efficiency is key !
Memory, compute, power

