
Mirror Hall
Virtual network displays to bridge mobile and desktop



In 1993, Xerox PARC pushed for “ubiquitous computing” [1]



Context
• Why are devices still so hard to interface with each other?

• E.g., convergence, peer-to-peer file sharing, are still wonky• Industry favoured proprietary products over long-lasting protocols
• Some solutions for wireless desktop mirroring exist...

• Moonlight, Sunshine -> fast and stable, mostly for games• GNOME Network Displays is a Chromecast/Miracast sharing tool
• We miss an open solution for virtual desktop mirroring

• i.e., extending your screen on another device



Simple mirroring

Records the primary screen, and replicates it on another.Lots of good solutions on Linux, all using screen recording API.
...



What about virtual mirroring?

This is possible! It requires spawning a virtual (headless) display, if the WM or graphical stack cooperate.



Apple Sidecar allows to use some iPads as extended screens for macOS [2]



Existing solutions wouldn’t work
• It(s a maze of proprietary protocols :(

• Miracast, Chromecast, AirPlay, Sidecar, DisplayLink, ... —> similar core idea
• Existing wireless display standards have high latency – usually ~1s!

• Mostly TCP-based -> optimized for stability over speed (e.g. for video playback)
• Implementations are often software-encoded

• All solutions are “unidirectional”: streamers only
• Turning a Linux device into a Miracast/Chromecast sink is hell
• Requires e.g. firmware or NetworkManager patches for ad-hoc (Wi-Fi direct)

• Usually meant for one stream at a time



Virtual mirroring, but multiplied?

Still possible, but some conditions apply: availability of video buffers, hardware encoding buffers, etc.



...multiple bidirectional virtual mirrors?

Each device should be able to choose its role, as a streamer or receiver, at runtime.



Timeline, so far
• 2020: GNOME 40 introduces“Headless native backend and virtualmonitors”

• https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698
• May, 2022, first prototype: “Using aLinux phone as a secondary monitor”

• https://tuxphones.com/howto-linux-as-second-wireless-display-for-linux/
• Nov 2023: first Mirror Hall beta

• https://fosstodon.org/@tuxdevices/111454321215302030
• Sep 24: First release!

• “Mirror Hall: peer-to-peer screen sharingbetween Linux devices”https://notes.nokun.eu/post/2024-09-22-mirrorhall/

https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698
https://tuxphones.com/howto-linux-as-second-wireless-display-for-linux/
https://tuxphones.com/howto-linux-as-second-wireless-display-for-linux/
https://fosstodon.org/@tuxdevices/111454321215302030
https://fosstodon.org/@tuxdevices/111454321215302030
https://notes.nokun.eu/post/2024-09-22-mirrorhall/
https://notes.nokun.eu/post/2024-09-22-mirrorhall/


Bidirectional Mirroring
(Mirror Hall window)



How?

libmirror libnetworklibcast

• MirrorHall— player/streamer app
• Adw+Gtk4+custom widgets (player, etc.)

• libmirror— creates virtual displays
• Detects desktop environment• Uses D-Bus (for now) to create virtual sink andrecord it using a PipeWire handle

• libcast — streams video over the network
• Generates the fastest pipelines for video streaming usingavailable hardware accelerators on the host (i.e. GPUs)

• Intel (vaapi), Qualcomm (venus), Broadcom...
• Handles network transmission also via GStreamer

• libnetwork — handles network communication
• Advertises Mirror Hall instance on local networksusing mDNS (a bit like Chromecast/Airplay/...)• Keeps track of health of stream (WiP)• Note: the video network stream (UDP) is nothandled by libnetwork, but offloaded tolibcast/gstreamer directly

App

DBus mDNS

Backend

Interface layer
...



How?
DBus(libmirror)

UDP or RTSP

Sender Receiver

mDNS(libnetwork)



Bonus: Retrocompatible Mirroring

so you can use Mirror Hall (somewhat painfully) on clients without Mirror Hall installed

$ gst-launch ...

RTSP

libcast + CLI

$ mirrorhall cast



build



How To: Virtual sinks
• We won(t talk about mDNS, UDP, health check, etc.
• ...sort of boring

• libmirror only supports Mutter
• Other DEs don(t expose virtual sink APIs yet?• Expanding libmirror to support them should be quite easy!

• Demo scripts:
• https://gitlab.com/tuxphones/side-displays
• https://gist.github.com/louiecaulfield/8688a4dfe59d4f6ec30038be693f7ccf

https://gitlab.com/tuxphones/side-displays
https://gist.github.com/louiecaulfield/8688a4dfe59d4f6ec30038be693f7ccf


How To: Virtual sinks
• No interaction with Wayland / kernel: Mutter can create a virtual backend for us
• Set of D-Bus calls to Mutter(s screencast APIs:• /org/gnome/Mutter/ScreenCast -> CreateSession

-> Returns stream name: '/org/gnome/Mutter/ScreenCast/Session/u{x}'
• /org/gnome/Mutter/ScreenCast/Session/u{x} -> RecordVirtual ({})
-> Returns stream path: ‘/org/gnome/Mutter/ScreenCast/Stream/u{x}’
• Start() -> call after to start the session on the stream

• /org/gnome/Mutter/ScreenCast/Stream/u{x}
• Create listener on signal: PipewireStreamAdded -> get PipeWire stream ID
$ dbus-monitor --session "type='signal',interface='org�gnome�Mutter�ScreenCast�Stream'"• Then call Start () on session...-> PipeWire stream will show up in the event handler!





How To: Streaming
• Once we have the PipeWire streamobject, we can send it over the networkvia GStreamer:

• The source (pipewiresrc) feeds the incomingstream to the GStreamer pipeline
• The encoder (x264, libav, openh264...)transforms the stream into the desided format(H264, H265, VP8, ...)
• The payload-encoder (rtph264pay) segmentsthe stream into transmittable packets
• The sink (udpsink, rtspsink, autovideosink)plays the result or transmits it over thenetwork
• Queues add buffering (and improve stability)

$ gst-launch-1�0 pipewiresrc path=110
! video/x-raw,width=1280,height=720
! queue
! x264enc

tune=zerolatency bitrate=6500
speed-preset=faster ! queue

! rtph264pay
! udpsink host=a�b�c�d port=6906

Or, to simply play the PipeWire stream we obtained...
$ gst-launch-1�0 pipewiresrc path=110

! video/x-raw,width=1280,height=720
! videoconvert ! queue
! autovideosink



How To: Receiving
The other way around...
r@eowyn ~> mirrorhall sink 1234

Mirrorhall CLI - version 0�1�1
Tip: run with GST_DEBUG=3 for debugging output
Sink started on port 1234 - press Ctrl+C to stop

Best decoder: avdec_h264
Tip: You can use this command to replicate the pipeline outside of Mirror Hall�

$ gst-launch-1�0
udpsrc port=1234 ! queue ! <- Accept UDP stream on port 1234
rtph264depay ! queue ! <- Extract video from RTP packet
avdec_h264 ! queue ! <- Decode H�264 using best decoder
[��� convert / parse ��� ] <- Not required for auto-converted pipeline
videoconvert ! <- Auto-convert to a player-accepted format
autovideosink <- Play video using any available UI sink



All About That Latency
• libcast is an accelerated pipeline generator

• Basically a database that generates a compatiblepipeline for devices using Qualcomm (ARM) venus,Intel/AMD (VAAPI), or known encoders like libav,openh264, and x264 with custom profiles• Should prioritize zero-copy / stateless in the future
• UDP vs. TCP

• Latency is considerably lower at the expense ofvideo artifacts when connection degrades
• Cap on stream quality (FPS and resolution)

• We cannot control video quality “live” using UDP
• Try to do minimal encoding work

• Tweak X264, openh264, libav profiles for simplicity• Optimized for speed over precision (i.e., temporaryartifacts may appear if the connection is weak)



Limitations
• MirrorHall requires UDP traffic to flow on ports 6900 to 6999• The port is randomized to allow multiple instances on the same host• Currently, hole-punching via Flatpak is not really an option
iptables:$ sudo iptables -A INPUT -p udp --dport 6900:6999 -j ACCEPT$ sudo iptables -A OUTPUT -p udp --sport 6900:6999 -j ACCEPT
firewalld (Fedora):$ sudo firewall-cmd --permanent --add-port=6900-6999/udp$ sudo firewall-cmd --reload
ufw (Ubuntu):$ sudo ufw allow 6900:6999/udp
nftables (postmarketOS):$ sudo nft add rule inet filter input udp dport 6900-6999 accept$ sudo nft add rule inet filter output udp sport 6900-6999 accept



Limitations pt. 2
• Newer versions of GNOME crashwhenclosing Mirror Hall - bad release timing :D• Mutter 43.x, 47.0, 47.1 are affected• 47.2 seems to work fine so far• Try at your own risk :)• Flathub(s version is slightly slower as it doesnot include proprietary encoders• Some other crashes esp. on ARM• 0.1.1 fixed some — testers needed!



Next steps
• Encryption and stability

• Insecure raw UDP H.264 for now• No existing solution within GStreamer (?)
• Split up app and protocol layers,adding UDP hole-punching—> Ideally: Rust + iroh
• Add mirroring of input methods

• e.g., for the use case of signing adocument using Wacom-enabled tablet• Maybe: proxy input events directly?
• Even Faster

• Zero-copy + stateless components



Conclusion
• We(re at 0.1.1. There(s still a longway to go...

• Divide into smaller components, improve transmission stability, and make it workupstream (i.e., not GNOME-only)
• Thanks to all who supported me!

• Sonny Piers,️ Caleb Connolly, Jonas Dressler, Tobias Bernard, Robert Mader, Rafał“rafostar” Dzięgiel, ...
• Looking for collaborators!

• Extend to other platforms (KDE, Sway) / protocols / hardware (RPi, ...)
• Keep in touch?

• DM me on Mastodon: @tuxdevices• Write me directly — r@nokun.eu• Let(s meet in Berlin!

http://r@nokun.eu


Attribution
References. (1) Schilit, Adams, et al., "The PARCTAB mobile computing system,"Proceedings of IEEE 4th Workshop on Workstation Operating Systems. WWOS-III,Napa, CA, USA, 1993, pp. 34-39

Images. p.2: see (1), p.3: Myrabella / Wikimedia Commons / CC BY-SA 3.0; AppleSidecar (apple.com/de/newsroom/2019/06/apple-previews-macos-catalina/);p.4: tuxphones.com, p.22: http://www.supertuxkart.at/page3/page3.html, p.16:modified from the cover of A. Malm, How To Blow Up A Pipeline, Verso Books
Artwork. The Mirror Hall icon was designed by Tobias Bernard.
This presentation is released under Creative Commons CC-BY-SA 4.0.Trademarks and artwork belong to their respective owners, which sounds kind of obvious tbh.



More Links + Q&A
Me (email) / TuxPhones (Mastodon🐘)@tuxdevices@fosstodon.org | r@nokun.eu

Mirror Hall 0.1.0 — Technical Deep Divenotes.nokun.eu/post/2024-09-22-mirrorhall/

GitLab — Mirror Hallgitlab.com/nokun/mirrorhall

📰

Chat rooms (join us!)@mirrorhall:gnome.org | t.me/MirrorHallApp

http://r@nokun.eu
https://fosstodon.org/deck/@tuxdevices
https://notes.nokun.eu/post/2024-09-22-mirrorhall/
https://gitlab.com/nokun/mirrorhall
https://t.me/MirrorHallApp
https://matrix.to/#/#mirrorhall:gnome.org

