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Context

e Confidential Containers (CoCo)
— CNCF project
— vendor neutral

— Facilitate confidential computing in the container
ecosystem

e Confidential Computing is (mostly) a VM
technology

— Containers usually do not run in VMs
— Kata Containers adds virtualization as isolation layer



What is a typical container launch?
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Sandbox?

* Pod: Kubernetes deployment ,,atom*.

e Set of collocated processes (containers) that
share namespaces and resources

* Good abstraction to introduce confidentiality
b O u n d a ri e S Container-Centric Pod-Centric Node-Centric

l More Sharing I
Smaller TCB



Confidential container launch
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... or with a remote CVM
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Attestation A
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Static and dynamic components

Dynamic Sandbox ?
°

- Static Components

Well covered: UKls, dm-verity, systemd...

Base OS . Kata Agent . Guest Components

. Pod Sandbox Container



OCl images are content addressable

$ oras manifest fetch ghcr.io/mkulke/nginx-e
ncrypted@sha256:5a81641ff9363a63c3f0al417d29
b527ff6e155206a720239360cc6c0722696e > manif
est.json

$ jqg '.layers[0].digest' < manifest.json
"sha256:d5e2d29403b03b4e74953d6bab263777d753
316e6c32ff7d9ofe4efadeaba9es53"

$ [0

[1] O:bash*

$ sha256sum -b manifest.json
5a81641ff9363a63c3f0al417d29b527ff6e155206a72
0239360cc6c0722696e *manifest.json

$

"magnuskulke@DESKTOP-2" 19:45 30-Jan-25




Sandbox with imperative control

wslhost.exe

t/agent_log_rpc.txt AEalrSELLE

ttRPC server started

rpc call from shim to
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rpc call from shim to

rpc call from shim to
rpc call from shim to

tmp/agent_log_rpc.txt
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agent:
agent:
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agent:
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agent:
agent:
agent:

"create_sandbox"
"get_guest_details"
"copy_file"
"create_container"
"start_container"
"wait_process"
"copy_file"

"create_container"
"start_container"
"stats_container"

75W 46% In :6/13=% :46 [[[M ./tmp/nginx.yaml

] X

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx
namespace: default
spec:
selector:
matchLabels:
app: ngﬂnx
replicas: 1
template:
metadata:
labels:
app: nginx
spec:
runtimeClassName: kata-remote
containers:
- name: nginx
image: bitnami/nginx:1.14
ports:
- containerPort: 80
imagePullPolicy: Always

40% In :9/22=:14




Attesting a container environment

Objective:

Ensure that only intended operations are executed
within the sandbox (before releasing a secret)

Requires:

A comprehensive measurement of the “container
workload”



Challenges in dynamic environments

* Dynamic Nature of Pods:

— Pods can have containers created, deleted, or
updated imperatively.

— Dynamisms make it challenging to guarantee
Integrity.
* Kubernetes Control Plane:
— Can and will adjust a user’s pod spec
— Examples: env variables, admission controllers



Options

* Lock k8s control plane:
— Allow only “trusted” (predictable) operations
— K8s api surface is huge, increasing constantly
— Requires lots of glue code and ceremony

e Effort underway: “split-api”



Options

* Keep alog
— (Somewhat) like linux’ IMA
— Record Kata RPC + payloads into replayable log

— Not all TEEs provide registers that can be
extended at runtime

— Some payloads are not predictable, b/c controlled
by the env

— Verification is not trivial



Options

* Policy in the TEE
— Describe invariants (image digest)
— Allow “acceptable” dynamism (env: SERVICE_*)
— Reject Kata RPCs by default
— cherrypick what’s required

* Currently implemented in Kata-Agent
— Engine based on Rego (popular in container-land)
— genpolicy tool to generate policy from a pod spec



Plugging policy eval into the workflow

Kata shim

Kata RPC Sandbox

process




Example Policy

package agent_policy

import future.keywords.in
import future.keywords.if
import future.keywords.every

default
default
default
default
default
default
default
default
default
default

default
default

CopyFileRequest := true
DestroySandboxRequest := tri
CreateSandboxRequest := true
GuestDetailsRequest := true
ReadStreamRequest := true
RemoveContainerRequest := tr
SignalProcessRequest := true
StartContainerRequest := tri
StatsContainerRequest := tri
WaitProcessRequest := true

CreateContainerRequest := false

ExecProcessRequest := false

CreateContainerRequest if {
every storage in input.storages {
some allowed image in policy data.allowed images

storage.source == allowed_image

ExecProcessRequest if {

input_command = concat( , input.process.Args)
some allowed_command in policy_data.allowed_commands

input_command == allowed_command

}

policy data := {
"allowed_commands": [
"whoami",
"false",
"curl -s http://127.0.0.1:8006/aa/token?token_type=kbs",
1>
"allowed_images": [
"pause",
"docker.io/library/nginx@sha256:e56797eab4a5300158cc@15296229¢1
1>
}



How to provide a policy to the TEE?

Policy is specific per workload
CVM images are generic
Provide it as measured configuration at launch

Link it to the TEE HW evidence

— Put hash in HOSTDATA (SEV-SNP), MRCONFIGID
(TDX), part of signed HW evidence (verify in TEE)

— Extend runtime registers (VTIPM)



Init-Data Specification

Measured configuration for CoCo
TOML dict of path/file content
Currently being implemented
Available for some TEEs

Embed into Pod spec as annotation

vim init-data.toml

INIT DATA B64="$(cat "init-data.toml™ | base64 -w0)"

cat nginx-cc.yaml | jg \
--arg initdata "$INIT DATA Be4" \
' .spec.template.metadata.annotations = { "io.katacontainers.config.r
| kubecl apply -f -



Initdata Example

algorithm = "sha256"
version = "@.1.8"
[data]

"aa.tomlll = LI ]

[token_configs]
[token_configs.kbs]
url = 'http://my-as:8080"

mmnn

cert =
MIIDEjCCAfqgAwWIBAgIUZYCcKIJID3QB/LGOFnacDyR1KhoikwDQYJKoZIhvcNAQEL

4La@LIGguUzEN7y9P59TS4b3E9XFyTg==

"th.toml“ — LI I
socket = 'unix:///run/confidential-containers/cdh.sock’
credentials = []

"policy.rego" =
package agent policy



Challenges

* Policy is stateless, declarative
— Kata RPC is imperative
— What about more complex orchestration?

* launch container x first (init container) then containery

* Ongoing effort: stateful policies



Challenges

* Practical problems
— Size of policies?
* Policies can be quite large
* Pod annotation has limits
 Compression, splitting, bundling a library
— User experience is subpar
* Rego is modelled after Datalog

* Unusual paradigms
* Not trivial to write large policies



Challenges

* Conceptual problems, maybe?

— Have to track kata’s RPC interface closely
* New exploit vectors can be introduced inadvertently
e Kata is not just for CoCo use case

* Need to keep tabs on API changes in semantics and
implementation



Challenges

* Runtime measurements

— (very) long running workloads in TEEs
 Examples: LLM inference, training tasks
* Continuous measurement to catch drift

— Not all TEEs have PCRs/RTMRs

— Can be retrofitted via privilege levels +
paravisor/SVSMs.

* “Composite” TEEs
— Confidential GPUs + Confidential CPUs
— Potentially more, e.g. accelerated NICs
— Attest individually? Chained?



Recap

Attestation for container sandboxes is tricky
due to inherent dynamic nature.

“Offloading” verification to a policy is a viable
mitigation

Few challenges remain, most seem
manageable

But policy is maybe not fully adequate



thx!
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https://confidentialcontainers.org/
https://katacontainers.io/
https://katacontainers.io/
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https://github.com/confidential-containers/trustee/blob/main/kbs/docs/initdata.md
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