Measurement and Attestation
Schemes for Container Sandboxes

Magnus Kulke, swe @Azure Core Linux
FOSDEM 25, Attestation Devroom

Context

e Confidential Containers (CoCo)
— CNCF project
— vendor neutral

— Facilitate confidential computing in the container
ecosystem

e Confidential Computing is (mostly) a VM
technology

— Containers usually do not run in VMs
— Kata Containers adds virtualization as isolation layer

What is a typical container launch?

K8s node
K8s API K8s
Server RPC | Kubelet =] CRI CaIIsJ
I

\
/////—— Containerd

OCI Runtime

Calls J == ————— -

I Sandbox :

[|

I { process :

I I

Runc I

| process | |

: :

Sandbox?

* Pod: Kubernetes deployment ,,atom*.

e Set of collocated processes (containers) that
share namespaces and resources

* Good abstraction to introduce confidentiality
b O u n d a ri e S Container-Centric Pod-Centric Node-Centric

l More Sharing I
Smaller TCB

Confidential container launch

K8s node
K8s API K8s
Server RPC Kubelet =1 CRI CaIIsJ
AY
OCI Runtime
Calls 5 Containerd
L
Kata shim

Sandbox

process

Kata Agent

... or with a remote CVM

K8s API
Server

K8s node

K8s

RPC

Kata RPC

Kubelet

.| CRI CaIIsJ

Y

OCI Runtime

Calls

S Containerd

L

Kata shim

/

Sandbox

process

Attestation A

Guest

CDH

attests guest

—————————requests resource

client-tool

- -
configures

KBS

RVPS

rchitecture

Trustee

—validates evidence

.,

>
-provides reference values

AS

Static and dynamic components

Dynamic Sandbox ?
°

- Static Components

Well covered: UKls, dm-verity, systemd...

Base OS . Kata Agent . Guest Components

. Pod Sandbox Container

OCl images are content addressable

$ oras manifest fetch ghcr.io/mkulke/nginx-e
ncrypted@sha256:5a81641ff9363a63c3f0al417d29
b527ff6e155206a720239360cc6c0722696e > manif
est.json

$ jqg '.layers[0].digest' < manifest.json
"sha256:d5e2d29403b03b4e74953d6bab263777d753
316e6c32ff7d9ofe4efadeaba9es53"

$ [0

[1] O:bash*

$ sha256sum -b manifest.json
5a81641ff9363a63c3f0al417d29b527ff6e155206a72
0239360cc6c0722696e *manifest.json

$

"magnuskulke@DESKTOP-2" 19:45 30-Jan-25

Sandbox with imperative control

wslhost.exe

t/agent_log_rpc.txt AEalrSELLE

ttRPC server started

rpc call from shim to
rpc call from shim to
rpc call from shim to
rpc call from shim to
rpc call from shim to
rpc call from shim to
rpc call from shim to

rpc call from shim to

rpc call from shim to
rpc call from shim to

tmp/agent_log_rpc.txt

agent:
agent:
agent:
agent:
agent:
agent:
agent:

agent:
agent:
agent:

"create_sandbox"
"get_guest_details"
"copy_file"
"create_container"
"start_container"
"wait_process"
"copy_file"

"create_container"
"start_container"
"stats_container"

75W 46% In :6/13=% :46 [[[M ./tmp/nginx.yaml

] X

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx
namespace: default
spec:
selector:
matchLabels:
app: ngﬂnx
replicas: 1
template:
metadata:
labels:
app: nginx
spec:
runtimeClassName: kata-remote
containers:
- name: nginx
image: bitnami/nginx:1.14
ports:
- containerPort: 80
imagePullPolicy: Always

40% In :9/22=:14

Attesting a container environment

Objective:

Ensure that only intended operations are executed
within the sandbox (before releasing a secret)

Requires:

A comprehensive measurement of the “container
workload”

Challenges in dynamic environments

* Dynamic Nature of Pods:

— Pods can have containers created, deleted, or
updated imperatively.

— Dynamisms make it challenging to guarantee
Integrity.
* Kubernetes Control Plane:
— Can and will adjust a user’s pod spec
— Examples: env variables, admission controllers

Options

* Lock k8s control plane:
— Allow only “trusted” (predictable) operations
— K8s api surface is huge, increasing constantly
— Requires lots of glue code and ceremony

e Effort underway: “split-api”

Options

* Keep alog
— (Somewhat) like linux’ IMA
— Record Kata RPC + payloads into replayable log

— Not all TEEs provide registers that can be
extended at runtime

— Some payloads are not predictable, b/c controlled
by the env

— Verification is not trivial

Options

* Policy in the TEE
— Describe invariants (image digest)
— Allow “acceptable” dynamism (env: SERVICE_*)
— Reject Kata RPCs by default
— cherrypick what’s required

* Currently implemented in Kata-Agent
— Engine based on Rego (popular in container-land)
— genpolicy tool to generate policy from a pod spec

Plugging policy eval into the workflow

Kata shim

Kata RPC Sandbox

process

Example Policy

package agent_policy

import future.keywords.in
import future.keywords.if
import future.keywords.every

default
default
default
default
default
default
default
default
default
default

default
default

CopyFileRequest := true
DestroySandboxRequest := tri
CreateSandboxRequest := true
GuestDetailsRequest := true
ReadStreamRequest := true
RemoveContainerRequest := tr
SignalProcessRequest := true
StartContainerRequest := tri
StatsContainerRequest := tri
WaitProcessRequest := true

CreateContainerRequest := false

ExecProcessRequest := false

CreateContainerRequest if {
every storage in input.storages {
some allowed image in policy data.allowed images

storage.source == allowed_image

ExecProcessRequest if {

input_command = concat(, input.process.Args)
some allowed_command in policy_data.allowed_commands

input_command == allowed_command

}

policy data := {
"allowed_commands": [
"whoami",
"false",
"curl -s http://127.0.0.1:8006/aa/token?token_type=kbs",
1>
"allowed_images": [
"pause",
"docker.io/library/nginx@sha256:e56797eab4a5300158cc@15296229¢1
1>
}

How to provide a policy to the TEE?

Policy is specific per workload
CVM images are generic
Provide it as measured configuration at launch

Link it to the TEE HW evidence

— Put hash in HOSTDATA (SEV-SNP), MRCONFIGID
(TDX), part of signed HW evidence (verify in TEE)

— Extend runtime registers (VTIPM)

Init-Data Specification

Measured configuration for CoCo
TOML dict of path/file content
Currently being implemented
Available for some TEEs

Embed into Pod spec as annotation

vim init-data.toml

INIT DATA B64="$(cat "init-data.toml™ | base64 -w0)"

cat nginx-cc.yaml | jg \
--arg initdata "$INIT DATA Be4" \
' .spec.template.metadata.annotations = { "io.katacontainers.config.r
| kubecl apply -f -

Initdata Example

algorithm = "sha256"
version = "@.1.8"
[data]

"aa.tomlll = LI]

[token_configs]
[token_configs.kbs]
url = 'http://my-as:8080"

mmnn

cert =
MIIDEjCCAfqgAwWIBAgIUZYCcKIJID3QB/LGOFnacDyR1KhoikwDQYJKoZIhvcNAQEL

4La@LIGguUzEN7y9P59TS4b3E9XFyTg==

"th.toml“ — LI I
socket = 'unix:///run/confidential-containers/cdh.sock’
credentials = []

"policy.rego" =
package agent policy

Challenges

* Policy is stateless, declarative
— Kata RPC is imperative
— What about more complex orchestration?

* launch container x first (init container) then containery

* Ongoing effort: stateful policies

Challenges

* Practical problems
— Size of policies?
* Policies can be quite large
* Pod annotation has limits
 Compression, splitting, bundling a library
— User experience is subpar
* Rego is modelled after Datalog

* Unusual paradigms
* Not trivial to write large policies

Challenges

* Conceptual problems, maybe?

— Have to track kata’s RPC interface closely
* New exploit vectors can be introduced inadvertently
e Kata is not just for CoCo use case

* Need to keep tabs on API changes in semantics and
implementation

Challenges

* Runtime measurements

— (very) long running workloads in TEEs
 Examples: LLM inference, training tasks
* Continuous measurement to catch drift

— Not all TEEs have PCRs/RTMRs

— Can be retrofitted via privilege levels +
paravisor/SVSMs.

* “Composite” TEEs
— Confidential GPUs + Confidential CPUs
— Potentially more, e.g. accelerated NICs
— Attest individually? Chained?

Recap

Attestation for container sandboxes is tricky
due to inherent dynamic nature.

“Offloading” verification to a policy is a viable
mitigation

Few challenges remain, most seem
manageable

But policy is maybe not fully adequate

thx!

References

Confidential Containers

Kata Containers - Open Source Container
Runtime

Policing a Sandbox | Microsoft Community
Hub

CoCo Initdata spec

https://confidentialcontainers.org/
https://katacontainers.io/
https://katacontainers.io/
https://techcommunity.microsoft.com/blog/linuxandopensourceblog/policing-a-sandbox-integrity-guarantees-for-dynamic-container-workloads/4271228
https://techcommunity.microsoft.com/blog/linuxandopensourceblog/policing-a-sandbox-integrity-guarantees-for-dynamic-container-workloads/4271228
https://github.com/confidential-containers/trustee/blob/main/kbs/docs/initdata.md

	Folie 1: Measurement and Attestation Schemes for Container Sandboxes
	Folie 2: Context
	Folie 3: What is a typical container launch?
	Folie 4: Sandbox?
	Folie 5: Confidential container launch
	Folie 6: … or with a remote CVM
	Folie 7: Attestation Architecture
	Folie 8: Static and dynamic components
	Folie 9: OCI images are content addressable
	Folie 10: Sandbox with imperative control
	Folie 11: Attesting a container environment
	Folie 12: Challenges in dynamic environments
	Folie 13: Options
	Folie 14: Options
	Folie 15: Options
	Folie 16: Plugging policy eval into the workflow
	Folie 17: Example Policy
	Folie 18: How to provide a policy to the TEE?
	Folie 19: Init-Data Specification
	Folie 20: Initdata Example
	Folie 21: Challenges
	Folie 22: Challenges
	Folie 23: Challenges
	Folie 24: Challenges
	Folie 25: Recap
	Folie 26
	Folie 27: References

