
Paddler 🏓🦙 
Self-hosted Large Language

Models at a scale 
 

github.com/distantmagic/paddler 

Where are we now when it comes to
LLMOps? 

- Infancy stage 👶 

- Still figuring out what works and what doesn’t 

- Businesses are yearning for stability 🏢 

- Too early to standardize anything 

What is Paddler? 🏓🦙 

- Load balancer custom-tailored for llama.cpp 

- Provides scalability 

- Aims to provide more stability in the ecosystem 

How do you end up with a custom load
balancer? 

Follow those few simple steps ╰┈➤ 

I want to host an open-source Large
Language Model. How?  

- Let’s start with a single host 

- VLLM, llama.cpp, Ollama, something else? 🤔 

- Why llama.cpp? 

Ok, I have my model hosted. Something
does not add up. 😳 

- 7B-12B models require 4-10 GB of VRAM 
- We can get up to ~200 tokens/sec on T100 
- T100 costs about ~$300/month  
- Does that mean we can serve poor experience to

~8 users for ~$300/month? 😱 

Back to the 90s

- We are again in a situation where a single server can handle a few dozen

users at most

- We need scalability from the start

- Feels like we are operating on servers from the 90s again

Looks like I need load balancing. 

- Ok, but what balancing algorithm should I use? 

Option 1: Round Robin 

- Not reliable in an environment where responses

can take variable amounts of time 

Option 2: Least Resources Used 

- GPU usage stays almost the same no matter how
many users use the system 

- The reason lies in the specifics of continuous
batching 

- Not reliable 

Option 3: Least Connections 

- Better than the other options 

- Resources are limited 

- We need to use application-aware features to

handle the load on top of it 

Option 4: Application-aware + least
connections + scaling = Paddler 

- Knows exactly when a server has no available
resources; does not bother it further 

- Can keep requests on hold without dropping them 
- Resilient, can handle llama.cpp instances going down 
- Supports StatsD metrics for autoscaling 

Paddler is lightweight 🪶 

- Based on Pingora framework 

- Adds llama.cpp instances health checks 

Scalability 

- Tree-like cascading structure 

- Similar to how you handle other types of load

balancers 

- Useful for staging environments 

High Availability 

- Put haproxy in front of Paddler, add a standby

host in a backup region 

Redirect traffic to 

Paddler vs… 🤺 

- Paddler is not really made to compete directly

with anyone 

- But how does it compare to: 

Paddler vs llama.cpp RPC 

- It makes sense to use both at the same time 

- Paddler adds dynamic setup and resiliency 

- Reverse proxy vs forward proxy 

Future plans 

- Bundling llama.cpp 

- Support Ollama and other runners 

- Inference API with semantic versioning for

stability 

Shout out to the contributors! 

- Luiz Miguel, https://github.com/Propfend 
^ contributed console dashboard, Paddler supervisor 

- ScottMcNaught, https://github.com/ScottMcNaught 
^ patiently helped me to debug lots of stuff 

- zamazan4ik, https://github.com/zamazan4ik  
^ great optimization tips 

https://github.com/Propfend
https://github.com/ScottMcNaught
https://github.com/zamazan4ik

Thank you! 

Join our community: 

- GitHub: https://github.com/distantmagic/paddler 

- Discord: https://discord.gg/kysUzFqSCK  

Reach out to me (Mateusz Charytoniuk): 

- GitHub: https://github.com/mcharytoniuk  

- LinkedIn: https://www.linkedin.com/in/mateusz-charytoniuk/  

https://github.com/distantmagic/paddler
https://discord.gg/kysUzFqSCK
https://github.com/mcharytoniuk
https://www.linkedin.com/in/mateusz-charytoniuk/

