
Level up your Linux gaming
[How sched_ext can save your fps]

Andrea Righi <arighi@nvidia.com>

Agenda

● Gaming on Linux
● Linux scheduling
● sched_ext + gaming
● Conclusion

Gaming on Linux

Gaming on Linux is serious business

● Linux has become a viable gaming platform
○ SteamOS / SteamDeck
○ Vulkan API
○ Proton
○ DXVK

● High compatibility with AAA games
● Improved Linux GPU drivers: NVIDIA / AMD / Intel

Gaming performance

● Frames per second (fps)
○ Primary metric for gaming performance

● Ideal fps for smooth gameplay
○ 30 fps: acceptable
○ 60 fps: fluid gaming experience
○ 120 fps: competitive gaming

Throughput vs consistency

● Throughput
○ Average fps

● Consistency
○ P99 fps (slowest 1% fps)

● Prioritize low variance for a better gaming experience

Why scheduling is so important?

● Most games are GPU intensive, however…
● The CPU is always the manager

○ Game engine (logic and AI)
○ State management
○ Audio processing

● CPUs are feeding data to the GPUs

Gaming workload (normal condition)

https://perfetto.dev

Xwayland 16.6ms =
60fps

Xwayland runs consistently every 16.6ms

Gaming workload (overloaded system)

https://perfetto.dev

Xwayland

Xwayland execution is inconsistent, missing the 16.6ms intervals

Linux scheduling

Scheduling in Linux

● One scheduler to rule them all
○ CFS < v6.6
○ EEVDF >= v6.6

● Really difficult to conduct experiments
● Really difficult to upstream changes
● Multiple out-of-tree schedulers

 Proportional weight-based CPU allocation: fairness

● Each task Ti has a weight wi

● The runtime assigned to each task Ti is proportional to
its weight wi divided by the sum of all the runnable
tasks’ weight

How fairness is implemented: vruntime

● Virtual runtime (vruntime)
○ Charge each task a runtime proportional to wbase

and inversely proportional to its weight wi

● Tasks are scheduled in order of increasing vruntime

EEVDF: Earliest Eligible Virtual Deadline First

● Lag: difference between the ideal runtime and the actual
runtime of a task

● Eligibility: a task is eligible to run if its lag >= 0
● Virtual deadline: vruntime + requested time slice (scaled)

sched_ext: the extensible scheduling class

● Technology in the Linux kernel that allows to implement
scheduling policies as BPF programs (GPLv2)

● Available since Linux v6.12
● Key features:

○ Bespoke scheduling policies
○ Rapid experimentation
○ Safety (can’t crash the kernel)

sched_ext + gaming

Design sched_ext scheduler(s) to prioritize latency

● Latency-sensitive tasks tend to block often
● Relax the fairness constraint and prioritize latency behavior

○ Boost priority in function of voluntary context switch rate
○ Track of sleep / wake up frequency per-task
○ Track average partial runtime per-task
○ Scale time slice inversely proportional to the number of

tasks waiting to be scheduled

VDER: Virtual Deadline with Execution Runtime

● Virtual deadline: total vruntime + partial vruntime accumulated
since the task was blocked on an event
○ t1 = current time
○ t0 = time when the task was blocked

Demo

● Gaming under pressure
○ https://www.youtube.com/watch?v=ZuWylrKJA38

https://www.youtube.com/watch?v=ZuWylrKJA38

Conclusion

Can sched_ext help gaming on Linux?

● Gaming devices are getting more complex
○ Topology complexity
○ Power saving

● Workload is getting more complex
○ Multiple high-priority activities

● Scheduling specialization could be the key to improve
gaming experience on Linux

Questions?

Andrea Righi <arighi@nvidia.com>

