
Rust-ifying the Linux
kernel scheduler

[…in user space]

Andrea Righi <arighi@nvidia.com>

Agenda

● Scheduling
● sched_ext & BPF
● Linux scheduler in Rust
● Conclusion

Scheduling

What is a scheduler

● Kernel component that determines
○ Where each task needs to run
○ When each task needs to run
○ How long each task needs to run

Challenges

● Fairness
○ All tasks should receive a fair share of CPU

● Optimization
○ Make optimal use of system resources

● Low overhead
○ Should run as fast as possible

● Generalization
○ Should work on all architectures and for every

workloads

Scheduling in Linux

● One scheduler to rule them all
○ CFS < v6.6
○ EEVDF >= v6.6

● Really difficult to conduct experiments
● Really difficult to upstream changes

sched_ext & BPF

sched_ext: the extensible scheduling class

● Technology in the Linux kernel that allows to implement
scheduling policies as BPF programs (GPLv2)

● Available since Linux v6.12
● Key features:

○ Bespoke scheduling policies
○ Rapid experimentation
○ Safety (can’t crash the kernel)

How does sched_ext work?

sched_ext limitations

● Limited programming model (BPF)
● BPF verifier complexity
● Kernel restrictions (no user-space libraries, no floating

point, etc.)

Linux scheduler in Rust

Idea

● Use sched_ext + BPF to channel scheduling events to
user space and make all the scheduling decisions there
○ A scheduler becomes a regular user-space program
○ Offload complexity to user space
○ Access to user-space libraries and languages

User-space Rust scheduler design

scx_rustland

● EDF-based scheduler
○ Deadline is evaluated as a function of the task’s

vruntime and the rate of voluntary context switches
● Tasks receive a variable time slice inversely proportional

to the total amount of tasks that are waiting to be
scheduled

Playing Terraria while building the kernel

EEVDF vs scx_rustland (https://perfetto.dev)

Generalize user-space Rust scheduling

● Rustland core framework
○ Abstract scx_rustland backend
○ Expose generic scheduling APIs
○ Available as a Rust crate (scx_rustland_core)
○ Allow to implement host-wide Linux scheduling policies

easily, as regular Rust programs

scx_rustland_core design

FIFO scheduler in scx_rustland_core

Conclusion

Key takeaways

● scx_rustland is not a better scheduler in general
● Rust itself doesn’t make scheduling faster
● Ease of experimentation is the key

○ Fast edit/compile/test turnaround
○ Integration with user-space components (Rust)

References

● Main scx repo
○ https://github.com/sched_ext/scx

● Rust scheduler template
○ https://github.com/arighi/scx_rust_scheduler

https://github.com/sched_ext/scx
https://github.com/arighi/scx_rust_scheduler

Questions?

Andrea Righi <arighi@nvidia.com>

