{ FOSDEM

Rust-ifying the Linux
kernel scheduler

[...in user space]

<~ NVIDIA

Andrea Righi <arighi@nvidia.com>

Agenda

Scheduling

sched_ext & BPF

Linux scheduler in Rust
Conclusion

Scheduling

What is a scheduler

e Kernel component that determines
o Where each task needs to run
o When each task needs to run
o How long each task needs to run

Challenges

e Fairness
o All tasks should receive a fair share of CPU
e Optimization
o Make optimal use of system resources
e Low overhead
o Should run as fast as possible
e Generalization
o Should work on all architectures and for every
workloads

Scheduling in Linux

e One scheduler to rule them all

o CFS<v6.6

o EEVDF >=v6.6
e Really difficult to conduct experiments
e Really difficult to upstream changes

sched_ext & BPF

sched_ext: the extensible scheduling class

e Technology in the Linux kernel that allows to implement

scheduling policies as BPF programs (GPLv2)
e Available since Linux v6.12

e Key features:
o Bespoke scheduling policies
o Rapid experimentation
o Safety (can’t crash the kernel)

sched_ext

How does sched_ext work?

sched_ext callbacks
(enqueue, dispatch, ...)

BPF scheduler

Kernel BPF

sched_ext limitations

e Limited programming model (BPF)

e BPF verifier complexity

e Kernel restrictions (no user-space libraries, no floating
point, etc.)

Linux scheduler in Rust

Idea

e Use sched_ext + BPF to channel scheduling events to
user space and make all the scheduling decisions there
o A scheduler becomes a regular user-space program
o Offload complexity to user space
o Access to user-space libraries and languages

User-space Rust scheduler design

Kernel

BPF

Z

libbpf

$

libbpf-rs

v

User-space scheduler

User space

scx_rustland

e EDF-based scheduler
o Deadline is evaluated as a function of the task’s
vruntime and the rate of voluntary context switches
e Tasks receive a variable time slice inversely proportional
to the total amount of tasks that are waiting to be
scheduled

Playing Terraria while building the kernel

206 (0) (L1%) Lo (0) (100%)

scXx_rustland

EEVDF vs scx_rustland (https://perfetto.dev)

EEVDF

scx_rustland

Generalize user-space Rust scheduling

e Rustland core framework
o Abstract scx_rustland backend
o Expose generic scheduling APlIs
o Available as a Rust crate (scx_rustland_core)
o Allow to implement host-wide Linux scheduling policies
easily, as regular Rust programs

scx_rustland_core design

sched_ext callbacks
(enqueue, dispatch, ...)

Kernel

scx_rustland_core
(backend)

N

BPF

libbpf

$

libbpf-rs

scx_rustland_core
(frontend)

User-space scheduler

User space

FIFO scheduler in scx_rustland_core

fn schedule (&mut self) {

let nr waiting = *self.bpf.nr queued mut();

while let Ok (Some(task)) = self.bpf.dequeue task() ({

let mut dispatched task = DispatchedTask: :new(&task);

let cpu = self.bpf.select cpu(task.pid, task.cpu, 0);
dispatched task.cpu = if cpu >= 0 { cpu } else { RL CPU ANY };
dispatched task.slice ns = SLICE NS / (nr waiting + 1);
self.bpf.dispatch task (&dispatched task) .unwrap();

}
self.bpf.notify complete (0);

Conclusion

Key takeaways

e scx_rustland is not a better scheduler in general
e Rust itself doesn’t make scheduling faster
e FEase of experimentation is the key
o Fast edit/compile/test turnaround
o Integration with user-space components (Rust)

References

e Main scx repo
o https://github.com/sched ext/scx
e Rust scheduler template
o https://github.com/arighi/scx_rust scheduler

https://github.com/sched_ext/scx
https://github.com/arighi/scx_rust_scheduler

{3 FOSDEM

Questions?

<2 NVIDIA

Andrea Righi <arighi@nvidia.com>

