
Securing the Internal Control
Plane with Standards & OSS

Antonios Chariton

<daknob@daknob.gov>

s/gov/net/

Enterprise Network

AS
65000

AS
65001

AS
65002

AS
64900

AS
64901

Enterprise Network

AS
65000

AS
65001

AS
65002

AS
64900

AS
64901

Rack 1 Rack 2 Rack 3

Enterprise Network

AS
65000

AS
65001

AS
65002

AS
64900

AS
64901

Branch 1 Branch 2 Branch 3

Enterprise Network

AS
65000

AS
65001

AS
65002

AS
64900

AS
64901

WiFi: 2001:db8::/64 
VMs: 2001:db8:0:1::/64 

Guest: 2001:db8:0:2::/64

WiFi: 2001:db8:2::/64 
VMs: 2001:db8:2:1::/64 

Guest: 2001:db8:2:2::/64
…

Provider Network

AS4601

Routing @ AS4601
• 100% eBGP for Internal Routing, no iBGP

• BGP Confederations, one per router

• Each router has its own RIB, makes independent decisions

• Collaboration via BGP Large Communities

• Multi-vendor, primarily Debian + bird2

• ~ 20 Core IP / Full BGP Routers

Provider Network

AS4601
(65000)

AS4601
(65001)

AS4601
(65002)

AS4601
(64900)

AS4601
(64901)

Towards Zero Trust

• Each router trusts only itself

• Treats information from others as “hints”

• Double-checks everything

• Kinda like each other Confederation AS being external / third-party

• Compromising a single router should in theory limit impact

Validating Public Routes

• Drop RPKI Invalid (and in some cases Unknown)

• IRR Filtering

• Bogon Lists

• Too large / too small

• […]

Validating Public Routes

• Drop RPKI Invalid (and in some cases Unknown)

• IRR Filtering

• Bogon Lists

• Too large / too small

• […]

2a0d:3dc0::/29
AS4601

Validating Internal Routes?

Problems
• Internal Route Leaks

• Internal Hijacks

• Internal $anything

• No IRR, no RPKI, looser “valid” meaning

• “Up to /24, except these 3 /26’s we have from an M&A in Atlanta”

• “No, I think A.B.C.D/24 is in NYC, not in Seattle”

Your entire playbook is
useless :(

What do people do?

• Nothing ¯_(ツ)_/¯

• O(n!) Prefix Lists or O(m!) Route Maps / Filters / …

• Usually hand-written, unmaintained

• No visibility: sub-optimal routing, asymmetries, packet loss, …

Let’s reuse the playbook!

The Public Route Playbook

• Drop RPKI Invalid (and in some cases Unknown)

• IRR Filtering

• Bogon Lists

• Too large / too small

• […]

The Public Route Playbook

• Drop RPKI Invalid (and in some cases Unknown)

• IRR Filtering

• Bogon Lists

• Too large / too small

• […]

The IGP Playbook

• Run a private RPKI internally

• Drop Invalids, Drop Unknowns for your prefixes

• Single source of truth for IP -> AS mapping

AS4601 RPKI Dashboard
Prefix Origin

193.5.16.0/31-32 AS64900

193.5.16.80/29-29 AS65001

2a0d:3dc0:100::/48-64 AS65001

2a0d:3dc0:16::/64-128
- AS65050

- AS65051

- AS65052

Filters are simple now!
function internal_backbone_import_v6 {

if net ~ IGP_PFX_V6 {

return roa_check(irpki6, net, bgp_path.last) = ROA_VALID;

}

return false; # or handle Public BGP Routes

}

Awesome, how do I do it?

Getting a Private RPKI

• NLNet Labs has Krill (Free / MPL 2.0 Software)

• It’s for Delegated RPKI, but it works for TALs, too

• You can create your own TAL, also HSM-Backed

• You can issue ROAs for your prefixes and private ASNs

Populating Data
• Depends on the current source of truth (or lack thereof)

• You can easily create an XLSX / CSV / YAML to Krill Importer

• If you use Netbox, it’s easy to do the same via its API

• Perhaps your favorite IPAM solution has something?

• You want to create a map of Prefix -> AS

• There’s flexibility in the map properties

Keeping Data in Sync

• If you use an outdated format, consider using Krill as source of truth

• No data to sync, after initial import this is your new SOT,
congratulations!

• If you have existing automation, periodically or on-change create / delete
ROAs

curl(1) cron(8)

Getting the data to the routers

• You can deploy Routinator from the same vendor

• Point it to your Krill instance / distribution points

• Add it directly or via RTRTR to your routers

• Identical to Public RPKI

Done!

Right?

Nope :(

Caveats
• Not all BGP implementations support independent RPKI sources

• Ideally you need the Private RPKI in a separate table, not merged with
RIRs’ data

• BGP Confederation handling is a wildcard

• bird2 has no way of separating confederation AS 65000 from eBGP AS
65000 in the filters / paths (but can in the UI)

• At least that’s only relevant if you use these. If you use eBGP then it’s
fine :)

Caveats
• RPKI does not protect from all types of attacks today

• You’d need to deploy ASPA as soon as it’s more readily available

• Which will hopefully be more complete, as you know all the possible
legitimate links in your network

• It will probably be a bit trickier to generate the objects from XLSX /
Visio / XML than just Prefix->AS…

• A list of internal ASes expected behind every BGP session is a stop-gap

Caveats
• If your RPKI Validator / Cache / […] goes down, your network will drop all routes

as “Not Valid” (while on the Internet it’d be Unknown and still accepted)

• Maybe you have an OOB directly connected network, which can now also
host RPKI and it’s 100% independent (wishful thinking)

• I host RPKI (Routinator / Krill / …) in a special prefix that:

• Is okay to be Unknown (but not Invalid)

• Serves data only on application-layer authenticated protocols (mTLS, SSH)

• Is close to all routers (sometimes chassis-local)

The Long Term Goal
• Automate the entire IGP Routing Security

• Enforce at every router, independently

• Enhanced visibility: SOT & RIB Dumps exist

• Unmatched alerting: many existing eBGP tools are now usable internally!

• AS Path Mismatch? Hijack? All detectable via RPKI violation monitoring

• More issues will be detected as more RPKI features are added (ASPA)

