Assessing and Mitigating the Risk of Carrington-Type Events with PowerModelsGMD.jl

FOSDEM 2025

Arthur K. Barnes, Jose E. Tabarez Feb 2025, LA-UR-25-20575. Approved for public release; distribution is unlimited.

Figure 1: Loss of power leads to industrialized nations becoming failed states¹

- Geomagnetic Disturbances (GMDs) resulting from solar events can have adverse imparts on the bulk electric system by causing geomagnetically induced currents (GICs)
- Impact could be blackouts or destruction of grid components with long lead times such as large power transformers (LPTs)
- Will civilization collapse?
- Do you need to keep your electronics in a Faraday box?

¹https://en.m.wikipedia.org/wiki/File:Ajdabiya_technical_-_Flickr_-_Al_Jazeera_English.jpg

How do GMD Events Work?

Figure 2: (a) Earth's normal magnetosphere, (b) Earth's substorm magnetosphere, and (c) The electrojet current (green arrow) producing a magnetic field (B) and inducing a geoelectric field (E) on power network. This generates a flow of geomagnetically induced current (GIC) in transmission lines. (Courtesy of Hydro-Québec.) [1]

- Coronal mass ejection (CME) results in a flow of charged particles above the surface of the Earth
- This flow results in a changing magnetic field
- Changing magnetic field in turn results in low-frequency electric field at the surface of the Earth
- This electric field couples into electric transmission lines

Figure 3: Ground electric field magnitude on 13 March 1989 [2]

- Magnetic field variation at the Earth's surface has significant content from $10^{-5}\,$ to 1 Hz
- The Earth behaves as a high-pass transfer function in terms of the relationship between the magnetic and electric fields at the surface
- The significant frequency content in the electric field is still significantly lower compared to the electrical time constants within a power transmission system - this will be important later

How do GMD Events Impact Electric Power Systems?

Figure 4: Large power transformer^a

- Silicon steel is expensive so large power transformers operate at the edge of saturation
- Quasi-dc currents will push transformers into half-cycle saturation
- This causes harmonic current injection plus an increased current at the fundamental frequency 90 degrees out of phase with the voltage
- Ultimate result is increase in reactive power draw

²https://commons.wikimedia.org/wiki/File: Substation Power Transformer 1.jpg

The Role of Computing in Power Systems

Figure 5: PowerWorld Simulator B7Flat Case^a

- SPICE-type software isn't suitable for analysis of multiconductor power systems
- Calculating impedances for multiconductor lines is
 non-trivial

- Types of solvers
 - Transient (EMTP)
 - Steady-state
 - balanced (positive-sequence)
 - unbalanced
 - Dynamic positive-sequence power flow with generator/load dynamics
- Types of problems
 - Load flow
 - Optimal power flow
 - Maximum loadability
 - Optimal transmission switching

a https://www.powerworld.com/training/quick-start-guides

GMD Analysis/Mitigation Workflow

Figure 6: NERC GMD assessment procedure¹

- 1. Generation of the dc network given the ac network
- Line coupling calculations to determine the induced voltages along transmission lines
- Calculations of the "effective" GICs (*l_{eff}*) on transformers
- Calculations of the transformer reactive power losses (q_{loss})
- 5. Solving the ac power flow problem.
- 6. Applying mitigation

Depending on the problem specification, some steps may be coupled (typically 3-5)

[&]quot;Application Guide: Computing Geomagnetically-Induced Current in the Bulk-Power System," NERC, 2013. [Online]. Available: https:

^{//}www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-Disturbance-Mitigation.aspx

AC and DC Representation for GMD Analysis

Conventional power systems problems can use positive-sequence representation:

- AC load flow (PF)
- Optimal power flow (OPF)
- Optimal line switching (OTS)
- Maximum loadability (MLD)

Figure 7: B6GIC ac positive-sequence representation³

Figure 8: BGIC quasi-dc representation³

Modeling GICs requires a multi-network representation as the physics of GICs are different from ac power flow:

- Similar to the zero-sequence representation of the ac network but only real-valued
- Inductances assumed short-circuits, capacitances assumed open-circuits

³ "Application Guide: Computing Geomagnetically-Induced Current in the Bulk-Power System," NERC, 2013. [Online]. Available: https://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-Disturbance-Mitigation.aspx

Why Use Transformer Neutral Blockers?

Options for mitigation include:

- Load-shedding
- Transmission line switching
- Generating switching and re-dispatch
- Shunt/series capacitor switching
- Transformer neutral blocking devices

Figure 9: GIC blocker construction⁴

Figure 10: GIC blocker schematic⁴

- Neutral blockers do not reduce the power-carrying capacity of the grid
- But...not guaranteed to reduce GICs to zero so 100% placement doesn't guarantee feasbility
- Forcing GICs to zero will require series capacitors

Analysis

- GIC
- GIC \rightarrow AC-PF
- GIC \rightarrow AC-OPF
- GIC \rightarrow AC-OPF time-extended
- GIC \rightarrow AC-MLD
- GIC \rightarrow AC-Cascade
- GIC + AC-PF
- GIC + AC-OPF
- GIC + AC-MLD

Mitigation

- GIC + AT-OTS
- GIC + AC-OTS time-extended
- GIC + AC-MLD blocker placement

Formulations

- ACP
- SDP
- SOC
- Solvers
 - JuMP Interface
 - Matrix Solve

PowerModelsGMD.jl Data Model

Figure 11: Relationship between and and dc components [3]

GIC Quasi-DC Components

- GMD Bus
- GMD Branch
- Transformer Neutral Blocker

AC Components

- Bus
- Branch
 - Transmission Line
 - Transformer
 - Three-Winding Transformer
 - HVDC Line
 - Switch
- Generator
- Load

Extended MatPower

- MatPower format contains tables for Buses, Branches, Generators
- Add additional tables for DC network: GMD Buses, GMD Branches, Transformer winding configurations

$\mathsf{RAW} + \mathsf{GIC}$

- CSV-like format with multiple tables concatenated into a single file
- Developed by PSS/E
- RAW AC components: Buses, Transmission Lines, Transformers, Three-Winding Transformers, Generators, Loads, HVDC Lines
- GIC Supplementary information: Substations, Bus-Substation mapping, Transformer winding configurations
- GIC doesn't provide the dc equivalent circuit, this is constructed on the fly

GIC Data Input

```
GTCFTLEVBSN=3
1, 'Sub A', 0, 40.0000, -89.0000, 0.200, '
2.'Sub B'.0. 40.0000.-87.0000. 0.200.''
0 / End of Substation data, Begin Bus Substation Data
1,1
2,2
3,1
4,2
0 / End of Bus Substation Data, Begin Transformer Data
1,3,0,' 1', 0.3000, 0.1000, 0.0000,0,0,0,'YNd0 ', 1, 1.1023,0,0,0,0
2,4,0,' 1', 0.3000, 0.1000, 0.0000,0,0,0,'YNd0 ', 1, 1.1023,0,0,0
0 / End of Transformer Data, Begin Bus Fixed Shunt Data
0 / End of Bus Fixed Shunt Data, Begin Branch Data
1,2,' 1',0, ,
0 / End of Branch Data, Begin User Earth Model Data
0 / End of User Earth Model Data
```


- Consider the ACTIVSg500 case^a
- 10V/km East-West uniform field
- Screening criterion: how many transformers have neutral currents over 100 A?
- Analysis: run matrix-based solve assuming ac voltages near 1.0 pu

Figure 12: ACTIVSg500

a_{https:}

^{//}smartgridcenter.tamu.edu/research/electric-grid-test-case-repository/

Results

julia> df[1:20,:] 20x5 DataErame					
Row	index	f_bus	t_bus	ieff	gloss
	Int64	Int64	Int64	Float64	Float64
	550	372	371	237.502	155.822
2	507	176	175	223.789	147.311
3	598	497	496	215.111	56.7195
4	541	319	318	190.938	50.3456
5	470	9		182.687	120.425
6	471			182.687	120.425
7	525	250	246	178.906	118.08
8	524	250	246	171.24	113.02
9	588	458	457	168.449	44.0469
10	477	24	23	109.073	71.9092
11	590	465	464	105.235	69.4771
12	535	275	274	104.135	27.3585
13	597	494	493	101.712	26.7216
14	489	82	80	97.925	64.8499
15	561	396	386	84.5904	55.7847
16	492	126	123	84.1744	55.5832
17	478	40	39	79.6352	52.5184
18	499	147	146	79.2606	52.0107
19	599	498	496	78.9331	20.7225
20	494	128	123	78.9135	52.1092

Figure 13: ACTIVSg500

- 131 total transformers
- Look at the top 20 transformers
- 13 transformers over 100 A
- This is similar to other studies less than 10% of transformers affected

References

Sebastien Guillon, Patrick Toner, Louis Gibson, and David Boteler.
 A colorful blackout: The havoc caused by auroral electrojet generated magnetic field variations in 1989.

IEEE Power and Energy Magazine, 14(6):59–71, 2016.

David H Boteler, Risto J Pirjola, and Luis Marti.
Analytic calculation of geoelectric fields due to geomagnetic disturbances: A test case.

```
IEEE Access, 7:147029-147037, 2019.
```

Hongwei Jin, Prasanna Balaprakash, Allen Zou, Pieter Ghysels, Aditi S Krishnapriyan, Adam Mate, Arthur Barnes, and Russell Bent.

Physics-informed heterogeneous graph neural networks for dc blocker placement. *arXiv preprint arXiv:2405.10389*, 2024.

Questions?

Github Repo: http://github.com/lanl-ansi/PowerModelsGMD.jl