<A NVIDIA

e o

est

analytics to ReFrame

Vasileios Karakasis, Felix Abecassis | FOSDEM'25 / 1-2 February, 2025

Applied Systems at NVIDIA

o We bring up the next-gen supercomputers for Al at c:
scale 1500
o Eos, DGXH100, 2023, #9 in Nov 2023 ¥ Thels
o pre-Eos, DGXH100, 2023, #14 in May 2023
o Selene, DGX A100, #5 in 2020
o Circe, DGX2H, #61 In 2018

e We enable Iarge scale clusters for internal users and {ome »NVIDIA Corporation »Eos NVIDIA DGX SuperPOD - NVIDIA DGX H100, Xeon Platinum 8480C 56C 3.8...

customers. | EFOS NVIDIA DGX SUPERPOD - NVIDIA DGX H100, XEON
» We work on new features and advances in the Deep PLATINUM 8480C 56C 3.8GHZ, NVIDIA H100, INFINIBAND
Learning/Al world (e.g. MLPerf, LLMs).

Site:
System URL:
Manufacturer: Nvidia
Cores: £85,888
IAlSt Of large langllage mOdels Processor: Xeon Platinum 8430C 56C 3.8GHz
Interconnect: Infiniband NDR40OO
Trained for 3
| ion Year: 2023
months on over nstallation Year
2000 A1 00 Performance
. . A GPUs on the | |
Megatron-Turing ~as | MiCTOSOft T 338.6 billion bt A Linpack Performance (Rmax] 121.40 PFlop/s
October 20211==: o 530i<~i i 38000 | NVIDIA Selene
NLG and Nvidia tokensi==. | T |
Su Derco r‘npute [Theoretical Peak (Rpeak) 188.65 PFlop/s
for over 3
million GPU-

i SANVIDIA.
hours =Y. < I

What is ReFrame?

An open-source framework originally developed by CSCS for writing system regression and performance tests,

primarily targeted (but not limited) to HPC systems. It essentially provides

a powerful and expressive syntax built in Python for writing tests in a more declarative manner
The tests express only their logic and constraints
Tests are composable and extensible
Interactions with the system are handled by the framework (batch schedulers, modules systems, etc.)

a runtime to run and manage the tests efficiently either locally or on HPC infrastructure
Mapping of tests to systems and environments
Parallel execution
Dependency and resource management
Concurrency control

integrations for results reporting (local files, Graylog, Elastic) and Cl

Github page:
Documentation:

Tutorials
Reference pages

NVIDIA

https://github.com/reframe-hpc/reframe
https://reframe-hpc.readthedocs.io/

Performance testing in ReFrame

Performance tests contain specially decorated
functions that extract figures of merit

References are defined by a multi-level dictionary
First level: System or system/partition combination

Second level: the reference tuple
(target_perf, lower_thres, upper_thres, unit)

Test will fail if obtained performance for any of the
performance variables is outside bounds

Test performance is logged to different channels

Files called perflogs
Users control the information to be logged

Elastic, Graylog
ReFrame sends the full test record to the server
Users can control the fields to exclude and the format of
the record

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class stream_test(rfm.RunOnlyRegressionTest):
valid_systems = ['*']
valid_prog_environs = ['*']
executable = 'stream.x’
reference = {
'generic:default’: {
‘copy_bw': (23_890, -0.10, 0.30, 'MB/s'),
'triad_bw': (17_064, -0.05, 0.50, 'MB/s'),

)

@sanity_function
def validate(self):
return sn.assert_found(r'Solution Validates', self.stdout)

@performance_function('MB/s')
def copy_bw(self):
return sn.extractsingle(r'Copy:\s+(\S+)', self.stdout, 1, float)

@performance_function('MB/s')

def triad_bw(self):
return sn.extractsingle(r'Triad:\s+(\S+)', self.stdout, 1, float)

NVIDIA

Performance testing in ReFrame

Example ReFrame output:

StreamCUDA %gpu=7 /2f2ee9cc (@cluster:default+builtin

(183/223) StreamCUDA %gpu=7 /2f2ee9cc @cluster:default+builtin
StreamCUDA %gpu=6 /83ee8ec® @cluster:default+builtin

(184/223) StreamCUDA %gpu=6 /83ee8ec® @cluster:default+builtin
StreamCUDA %gpu=5 /9110935f @cluster:default+builtin

(185/223) StreamCUDA %gpu=5 /9f10935f @cluster:default+builtin
StreamCUDA %gpu=4 /b4f0328d @cluster:default+builtin

(186/223) StreamCUDA %gpu=4 /b4f0328d @cluster:default+builtin
StreamCUDA %gpu=3 /4279215e @cluster:default+builtin

(187/223) StreamCUDA %gpu=3 /4279215e @cluster:default+builtin
StreamCUDA %gpu=2 /7bc9421f @cluster:default+builtin Perflog example:

(188/223) StreamCUDA %gpu=2 /7bc9421f @cluster:default+builtin

StreamCUDA %gpu=1 /5aea23c7 @cluster:default+builtin format' : (

(189/223) StreamCUDA %gpu=1 /Saea23c7 @cluster:default+builtin '%(check_job_completion_time)s|%(check_display_name)s|%(check_perf_var)s|’
StreamCUDA %gpu=0 /1cb37dc2 @cluster:default+builtin '%(check_perf_value)s|%(check_perf_unit)s|%(check_perf_ref)s|’

(196/223) StreamCUDA %gpu=0 /1cb37dc2 @cluster:default+builtin '%(check_perf_lower_thres)s|%(check_perf_upper_thres)s|%(check_result)s'

2025-01-25T21:10:10 | StreamCUDA %gpu=0|Copy |mmmm|GB/s|AAaA|-0.03|null|pass
2025-01-25T21:10:10 | StreamCUDA %gpu=0|Scale |mmmm|GB/s|AAAA|-0.03|0.03]|pass
2025-01-25T721:10:10|StreamCUDA %gpu=0|Add |mmmm|GB/s|AAaA|-0.03|0.03|pass

] (223/223) cufftBench %gpu=7 /ed4eb2640 @cluster:default+builtin

] all spawned checks have finished
] Ran 223/223 test case(s) from 223 check(s) (@ failure(s), © skipped, @ aborted)

] Finished on Sat Jan 25 21:31:54 2025-0300

2025-01-25T721:10:10|StreamCUDA %gpu=0|Triad |mmmm|GB/s|A4aaA|-0.03]0.03|pass
2025-01-25T21:10:10 | StreamCUDA %gpu=0|Read |mmmm|GB/s|AAAA|-0.03]|0.03]pass
2025-01-25T21:10:10|StreamCUDA %gpu=0 |Write |mmmm|GB/s|AAAA]D.€ pass

NVIDIA

Deriving performance bounds

Performance Distribution (u=100, 0=5)

o Assuming a normal distribution for the performance 0.10
metric. B +10 (68%)
o *#20 bounds: too narrow, spurious failures without an mm +20 (95%) ' ' ' '
actual regression. >, 0.08- - ;
o *30 bounds (or more): too large, cannot detect small = +30 (99.7%)
performance regressions. o ' '
o Users of the test suite don’t like false positives, so A 0.06-
the bounds tend to grow larger. iy
2 0.04-
O
O
~0.02-
0.00

80 85 90 95 100 105 110 115 120
Metric

I <A NVIDIA.

Probability Density

0.14

-
-
N

-
)
-

=
O
00

2
=
)

O
-
NN

=2
-
N

0.00

Setting bounds *30 in ReFrame

Regression (but within bounds)

Original performance

W
Q

| _-________-_T__-_________-
W
Q

90 95 100 105 110
Metric

80

00
U

115

120

NVIDIA

Limitations of performance testing in ReFrame

As cluster owners, we need to validate the performance of a software stack upgrade before deploying it.

We need more than fixed performance bounds.
Averages, historical trends, comparisons
Performance variations within the reference thresholds go undetected

ReFrame was historically stateless.
No way to compare current run with the performance of previous runs

ReFrame users had to rely on external solutions even for basic analysis.
Using external frameworks, such as Splunk, Elasticsearch
Using homegrown Pandas script, etc.
Usually bound to perflog formatting, which is quite user-specific
These solutions are often non-portable and complex to deploy and maintain

NVIDIA

Extending ReFrame with performance analytics

Inspect past test results

Aggregate test performance across different dimensions
Test parameters
Nodelists
Time periods

Compare performance between runs
Current run vs. historical data
Runs with different characteristics
Runs from different time periods

Store as much test case information as possible
Allow external post-processing if needed
Backward compatible

Command-line interface

NVIDIA

Extending ReFrame with performance analytics

Two options considered:

Use of perflogs

Pros:
Simple CSV data format (usually)
Compact

Cons:
Important test information may be lost
Information is not context-free (relies on what users deem important to include in the log record)

Use of internal JSON report data (see also existing --report-file option)

Pros:
Contains the full session and test case information
Information is ReFrame-specific, not user-specific

Cons:
Much more verbose than perflogs
Data is unstructured

We selected option (2) since all test information is valuable and user-independent data format is important.

NVIDIA

Extending ReFrame with performance analytics

Design and architecture

o Command-line interface

o ==-list-stored-{testcases/sessions}
m Presents data in tabular form (by default)

o --describe-stored-{testcases/sessions} CLI
m Returns raw data in JSON

o =--performance-compare
m Compares past results

o -=-performance-report
m Optionally compares current run with past results

o --session-extras
= Extra information to be stored with the current session Storage Layer

o --table-format
m Controls format of tabular data (supports CSV output)
e Analytics Layer
o @Groups test cases
o Aggregates performance
o Calculates performance differences
o Returns tabular or JSON data to upper layer

e Storage Layer
o Responsible for interacting with the results storage
o Stores and queries results
o Filters results
o Returns raw JSON data to be processed by upper layer

e Jest case grouping
Analytics Layer « Performance aggregations
« Performance differences

e Query database
o Filter results

<ANVIDIA. I

Extending ReFrame with performance analytics

Implementation details

e A report contains a single session
e A session corresponds to a reframe --run invocation. It
contains:

o Basic session information:
= UUID, start/end timestamps, user, hostname, command line,
basic statistics etc.
m Extra user information passed with --session-extras

o A session contains one or more runs

e Arun corresponds to a run cycle of tests in the same
session, e.q.,
o retried tests due to --max-retries

o rerun tests due to --reruns or --duration
o A run contalns zero or more testcases.

o A testcase is an instance of a test that has executed on
a specific system, partition and environment
combination. It contains:

o All test variables and parameters

o Performance variables with the obtained performance
o Performance references and thresholds

session_info

runs

ReFrame report structure

run info

testcases

run info

testcases

N run info

testcases

testcase info

testcase info
... testcase info
testcase info

testcase info

. testcase info

<A NVIDIA. I

Extending ReFrame with performance analytics

We store the full JSON reports in a SQLite database
Each report is indexed by its UUID, start and end timestamps.
Individual testcases are indexed by their name, system, partition, environment and job_completion_time_unix.

Fach testcase is assigned a pseudo-UUID which has the form: <session_uuid>:<run_index>:<testcase_index>
This contains the exact testcase coordinates in the specific report.

We employ file locking to ensure concurrent access to the DB file

Time-based testcase queries use the index to retrieve the sessions of interest
The sessions are decoded and the full testcase info is retrieved
Filtering happens on the decoded testcase

Session queries use the session index to retrieve the sessions of interest
For filtering, only session_info is decoded.

NVIDIA

Extending ReFrame with performance analytics

The general syntax of past result queries is: <select>/<aggregation>/<columns>
Not all options accept the <aggregation> and <columns> specs
The --performance-compare options requires two <select> specs

The <select> spec defines which results to select:
Timestamp form: 20240125:20240131
Timestamp form with abbreviations: now-7d : now
Session UUID form: eba49e9¢c-8112-45b7-8680-34a5c9e08ac?2

Session properties: ' ?driver_version=="570.26" and hostname=="nid006061"’
Any from the predefined or user-specified properties passed with -—-session-extras can be queried
Any valid Python expression on session properties is accepted

NVIDIA

Extending ReFrame with performance analytics

The <aggregation> spec defines how results will be aggregated: <aggr_fn>:<group_by>
Default grouping is by: name, system, partition, environment, pvar, punit
Add more properties to the default group by, e.g.. mean:+job_nodelist
Use a custom grouping, e.g., mean:name, pvar, punit
Available aggregation functions: first, last, mean, median, min, max

The <columns> spec defines how the aggregated results will be presented:
By default all the grouped properties and the aggregated performance is displayed (along with the performance difference for
comparisons)

Add more columns to display: +jobid+env_vars
Different property values are joined in a comma-separated list and displayed

Use custom column listing: name, pvar, pval, punit,psamples

Existing test filtering options can also be used:
-n | --name: filter by test name
-E| --filter-expr: filter by evaluating an expression on test's properties

NVIDIA

Extending ReFrame with performance analytics

List the mean performance of a specific benchmark for the last 7 days:
--list-stored-testcases=now-7d:now/mean:/ -n StreamCUDA

Assuming a multi-way parameterized benchmark, e.qg., ParamTest %mode=foo %gpu=3, give me the mean
performance across all GPUs for all nodes and all benchmark modes for a specific driver:

--list-stored-testcases="?driver_version=="570.26""'/mean:name, mode, pvar,punit, job_nodelist/+psample
s -n ParamTlest

Compare all benchmark data between two driver versions:

--performance-compare="'?driver_version=="570.26""/"'?driver_version=="560.28.03""' /median:/
NB: Assumes driver_version has been passed with --session-extras during the runs

Show basic information of all sessions between two timestamps
--list-stored-sessions=20250110T0300:20250110T0500

Dump a specific session in JSON:

--describe-stored-sessions=ebad49e9c-811f2-45b7-8680-34a5c9eB8ac?
You can use jq to filter the session infoonly: jg .[].session_info

NVIDIA

Extending ReFrame with performance analytics

Feature is available in ReFrame >=4.7
Enable with RFM_ENABLE_RESULTS_STORAGE=y

Optionally set the database file with RFM_SQLITE_DB_FILE=/path/to/results.db
Default: SHOME/ . reframe/reports/results.db

karakasis@cluster-abc:~S reframe --table-format=plain --performance-compare='?"nightly" in tag and "XXX" in gpu_part_no'/'?"nightly" in tag
and "YYY" in gpu_part_no' /mean:name,pvar,punit/ -n FooTestHost

pval_A pval_B pdiff

FooTestHost foo_bandwidth_1 41.2099 40.6905
FooTestHost foo_bandwidth_2 46.0236 45.6234
FooTestHost foo_bandwidth_3 50.1933 50.1117
FooTestHost foo_bandwidth_4 55.3926 55.3876
FooTestHost foo_bandwidth_5 52.7173 52.709
FooTestHost foo_bandwidth_6 55.5225 55.5224
FooTestHost foo_bandwidth_7 51.5333 51.5287
FooTestHost foo_bandwidth_8 49.3288 49.6312
FooTestHost foo_bandwidth_9 55.5412 55.5424
FooTestHost foo_bandwidth_10 51.5311 51.5329

NVIDIA

Using ReFrame on our clusters

e We have to test each hardware component:

O
O
O

O O O O

Each GPU
NVLink

Each InfiniBand HCA

m Storage (Lustre)
m Compute

Fach CPU + RAM + CPU interconnect
Each PCle link

Each NVMe SSD

Each network link / switch

Lustre

IPCle

Lustre

UPI

Compute IB

IPCle

PCle]

Compute IB

PCle]

|
NVLink “
|

T

@A NVIDIA. I

Using ReFrame on our clusters

o Test setup
o Run-only tests using containers launched with Enroot+Pyxis (container runtime) over Slurm

¢ Single node ReFrame performance tests: running automatically on every node every few days.
o NCCL NVLink: https://aithub.com/NVIDIA/nccl-tests

nvbandwidth: https://aithub.com/NVIDIA/nvbandwidth

perftest: https://aithub.com/linux-rdma/perftest

STREAM: https://www.cs.virginia.edu/stream

fio: https://github.com/axboe/fio

O O O O O

o Multi-node ReFrame performance tests: running once a week, or as needed for validation of new software.
Distributed Pytorch training: https://agithub.com/pytorch/pytorch

OSU Benchmarks: https://mvapich.cse.ohio-state.edu/benchmarks/

NVIDIA NeMo: https://github.com/NVIDIA/NeMo

MLPerf Training: https://github.com/mlcommons/training results v4.]

NVIDIA HPC Benchmarks container (HPL, HPL-MxP, HPCG)

NCCL InfiniBand / Multi-Node NVLink

O O O O O O

<ANVIDIA. I

https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nvbandwidth
https://github.com/linux-rdma/perftest
https://www.cs.virginia.edu/stream/
https://github.com/axboe/fio
https://github.com/pytorch/pytorch
https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/NVIDIA/NeMo
https://github.com/mlcommons/training_results_v4.1

Gitlab CI

Run pipeline
Run for branch name or tag

main

Variables

Variable l TARGET_CLUSTER \ cluster-abc

The cluster to target

Variable | TEST_PIPELINE ’ single-node
The kind of tests to launch
| | Upstream
Variable l TEST SUITE \ short sniff
_ | | (x| perf
The test suite to launch % #23081661 ° node000?2 C
Variable l PARTITION ’ | admin %‘ Parent
Slurm partition to use ° node0005 ~
Variable l Input variable key \ l Input variable value %' O nodeQ006 C
Specify variable values to be used in this run. The variables specified in the configuration file as well as CI/CD settings are used by default. =
Variables specified here are expanded and not masked. o node0007 —
Cancel M o node0009 C
o Gitlab Cl is the interface used by our cluster admins to launch ReFrame @ node0010 C
validation and performance checks -
e For single node tests, we spawn Cl jobs on every available node and launch @ nodeoy =
ReFrame locally collecting useful node information for later queries: B ioaco0i3 =
o Driver version, VBIOS version, GPU and Board part numbers
o Cl pipeline and job IDs ® node0017 ~
o Cl branch name
o Test pipeline and test suite type © node0018 o

e We use a single results database per cluster

<ANVIDIA. I

Summary

26097 tests

Jobs

Job

node001/

node0002

node0005

GitLab CI: inspecting results

6 failures O errors
Duration Failed
Th 40m 14s |
Th 39m 45s 0
Th 39m 53s 0

[project/admin/fabecassis/gitlab-runner/TbRA22Kr_/13/dcse-appsys/perf/ X
reframe/cpu_test.py

Name CPU_Test %cpu_node=1 %dtype=fp64 @cluster:singlenode+builtin
Execution time 22.40s

System output

performance: performance error: falled to meet references: mean=1621.21 gflops, expected 3110.2
(1=2954.6899999999996, u=3234.60879999999997)

Errors

99.98% success rate

Skipped Passed
0 222
O 223
0 223

Total

223

223

223

e JUnit report generated by ReFrame with
--report-junit

e Perf reference was:

O

'mean ' :

(3116.2, -0.05, 0.04,

'gflops'),

<ANVIDIA. I

Conclusions & Future Work

Support for basic performance analytics in ReFrame is a substantial improvement that helps users get insights quickly
on their performance data

It's a feature orthogonal to existing performance logging and does not exclude external processing, rather facilitates it
Modular design that allows alternative implementations for both the storage and analytics layers

Next steps:

Collect and present more statistics over results at once (percentiles, mean, stddev etc.)
This will allow users to derive quickly performance references and bounds for tests

Extend session selection syntax to support time periods and property filtering at the same time
This will optimize session queries on large databases as it will limit the filtering span
Improve presentation of results

Support of filtering in/fout columns for sessions
Allow users to name performance columns for A/B testing

Import existing results (perflogs, reports) to the results DB
Make the performance comparison feature easily accessible across our teams

NVIDIA

<A NVIDIA.

