
Adding built-in support for basic performance test
analytics to ReFrame
Vasileios Karakasis, Felix Abecassis | FOSDEM'25 / 1–2 February, 2025

Applied Systems at NVIDIA

● We bring up the next-gen supercomputers for AI at
scale
○ Eos, DGXH100, 2023, #9 in Nov 2023
○ pre-Eos, DGXH100, 2023, #14 in May 2023
○ Selene, DGX A100, #5 in 2020
○ Circe, DGX2H, #61 in 2018

● We enable large scale clusters for internal users and
customers.

● We work on new features and advances in the Deep
Learning/AI world (e.g. MLPerf, LLMs).

What is ReFrame?

● An open-source framework originally developed by CSCS for writing system regression and performance tests,
primarily targeted (but not limited) to HPC systems. It essentially provides
○ a powerful and expressive syntax built in Python for writing tests in a more declarative manner
■ The tests express only their logic and constraints
■ Tests are composable and extensible
■ Interactions with the system are handled by the framework (batch schedulers, modules systems, etc.)

○ a runtime to run and manage the tests efficiently either locally or on HPC infrastructure
■ Mapping of tests to systems and environments
■ Parallel execution
■ Dependency and resource management
■ Concurrency control

○ integrations for results reporting (local files, Graylog, Elastic) and CI

● Github page: https://github.com/reframe-hpc/reframe
● Documentation: https://reframe-hpc.readthedocs.io/
○ Tutorials
○ Reference pages

https://github.com/reframe-hpc/reframe
https://reframe-hpc.readthedocs.io/

Performance testing in ReFrame
 Test syntax and logging

● Performance tests contain specially decorated
functions that extract figures of merit

● References are defined by a multi-level dictionary
○ First level: System or system/partition combination
○ Second level: the reference tuple
■ (target_perf, lower_thres, upper_thres, unit)

● Test will fail if obtained performance for any of the
performance variables is outside bounds

● Test performance is logged to different channels
○ Files called perflogs
■ Users control the information to be logged

○ Elastic, Graylog
■ ReFrame sends the full test record to the server
■ Users can control the fields to exclude and the format of

the record

import reframe as rfm
import reframe.utility.sanity as sn

@rfm.simple_test
class stream_test(rfm.RunOnlyRegressionTest):
 valid_systems = ['*']
 valid_prog_environs = ['*']
 executable = 'stream.x'
 reference = {
 'generic:default': {
 'copy_bw': (23_890, -0.10, 0.30, 'MB/s'),
 'triad_bw': (17_064, -0.05, 0.50, 'MB/s'),
 }
 }

 @sanity_function
 def validate(self):
 return sn.assert_found(r'Solution Validates', self.stdout)

 @performance_function('MB/s')
 def copy_bw(self):
 return sn.extractsingle(r'Copy:\s+(\S+)', self.stdout, 1, float)

 @performance_function('MB/s')
 def triad_bw(self):
 return sn.extractsingle(r'Triad:\s+(\S+)', self.stdout, 1, float)

Performance testing in ReFrame
Examples

● Example ReFrame output:

● Perflog example:

'format': (
 '%(check_job_completion_time)s|%(check_display_name)s|%(check_perf_var)s|’
 ‘%(check_perf_value)s|%(check_perf_unit)s|%(check_perf_ref)s|’
 '%(check_perf_lower_thres)s|%(check_perf_upper_thres)s|%(check_result)s'
),

perf value
(redacted)

target perf
(redacted)

bounds

Deriving performance bounds

● Assuming a normal distribution for the performance
metric.
○ ±2σ bounds: too narrow, spurious failures without an

actual regression.
○ ±3σ bounds (or more): too large, cannot detect small

performance regressions.
● Users of the test suite don’t like false positives, so

the bounds tend to grow larger.

Setting bounds ±3σ in ReFrame

Limitations of performance testing in ReFrame

● As cluster owners, we need to validate the performance of a software stack upgrade before deploying it.
○ We need more than fixed performance bounds.
■ Averages, historical trends, comparisons
■ Performance variations within the reference thresholds go undetected

● ReFrame was historically stateless.
○ No way to compare current run with the performance of previous runs

● ReFrame users had to rely on external solutions even for basic analysis.
○ Using external frameworks, such as Splunk, Elasticsearch
○ Using homegrown Pandas script, etc.
○ Usually bound to perflog formatting, which is quite user-specific
○ These solutions are often non-portable and complex to deploy and maintain

Extending ReFrame with performance analytics
Key Goals

● Inspect past test results
● Aggregate test performance across different dimensions
○ Test parameters
○ Nodelists
○ Time periods
○ …

● Compare performance between runs
○ Current run vs. historical data
○ Runs with different characteristics
○ Runs from different time periods

● Store as much test case information as possible
● Allow external post-processing if needed
● Backward compatible
● Command-line interface

Extending ReFrame with performance analytics
Challenges

Two options considered:

1. Use of perflogs
• Pros:

• Simple CSV data format (usually)
• Compact

• Cons:
• Important test information may be lost
• Information is not context-free (relies on what users deem important to include in the log record)

2. Use of internal JSON report data (see also existing --report-file option)
• Pros:

• Contains the full session and test case information
• Information is ReFrame-specific, not user-specific

• Cons:
• Much more verbose than perflogs
• Data is unstructured

We selected option (2) since all test information is valuable and user-independent data format is important.

Extending ReFrame with performance analytics
Design and architecture

● Command-line interface
○ --list-stored-{testcases/sessions}
■ Presents data in tabular form (by default)

○ --describe-stored-{testcases/sessions}
■ Returns raw data in JSON

○ --performance-compare
■ Compares past results

○ --performance-report
■ Optionally compares current run with past results

○ --session-extras
■ Extra information to be stored with the current session

○ --table-format
■ Controls format of tabular data (supports CSV output)

● Analytics Layer
○ Groups test cases
○ Aggregates performance
○ Calculates performance differences
○ Returns tabular or JSON data to upper layer

● Storage Layer
○ Responsible for interacting with the results storage
○ Stores and queries results
○ Filters results
○ Returns raw JSON data to be processed by upper layer

Extending ReFrame with performance analytics
Implementation details

● A report contains a single session
● A session corresponds to a reframe --run invocation. It

contains:
○ Basic session information:
■ UUID, start/end timestamps, user, hostname, command line,

basic statistics etc.
■ Extra user information passed with --session-extras

○ A session contains one or more runs
● A run corresponds to a run cycle of tests in the same

session, e.g.,
○ retried tests due to --max-retries
○ rerun tests due to --reruns or --duration
○ A run contains zero or more testcases.

● A testcase is an instance of a test that has executed on
a specific system, partition and environment
combination. It contains:
○ All test variables and parameters
○ Performance variables with the obtained performance
○ Performance references and thresholds

ReFrame report structure

Extending ReFrame with performance analytics
Implementation details

● We store the full JSON reports in a SQLite database
○ Each report is indexed by its UUID, start and end timestamps.
○ Individual testcases are indexed by their name, system, partition, environment and job_completion_time_unix.
○ Each testcase is assigned a pseudo-UUID which has the form: <session_uuid>:<run_index>:<testcase_index>
■ This contains the exact testcase coordinates in the specific report.

○ We employ file locking to ensure concurrent access to the DB file

● Time-based testcase queries use the index to retrieve the sessions of interest
○ The sessions are decoded and the full testcase info is retrieved
○ Filtering happens on the decoded testcase

● Session queries use the session index to retrieve the sessions of interest
○ For filtering, only session_info is decoded.

Extending ReFrame with performance analytics
Query syntax I

● The general syntax of past result queries is: <select>/<aggregation>/<columns>
○ Not all options accept the <aggregation> and <columns> specs
○ The --performance-compare options requires two <select> specs

● The <select> spec defines which results to select:
○ Timestamp form: 20240125:20240131
○ Timestamp form with abbreviations: now-7d:now
○ Session UUID form: eba49e9c-81f2-45b7-8680-34a5c9e08ac2
○ Session properties: '?driver_version=="570.26" and hostname=="nid0001"'
■ Any from the predefined or user-specified properties passed with --session-extras can be queried
■ Any valid Python expression on session properties is accepted

Extending ReFrame with performance analytics
Query syntax II

● The <aggregation> spec defines how results will be aggregated: <aggr_fn>:<group_by>
○ Default grouping is by: name, system, partition, environment, pvar, punit
○ Add more properties to the default group by, e.g.: mean:+job_nodelist
○ Use a custom grouping, e.g., mean:name,pvar,punit
○ Available aggregation functions: first, last, mean, median, min, max

● The <columns> spec defines how the aggregated results will be presented:
○ By default all the grouped properties and the aggregated performance is displayed (along with the performance difference for

comparisons)
○ Add more columns to display: +jobid+env_vars
■ Different property values are joined in a comma-separated list and displayed

○ Use custom column listing: name,pvar,pval,punit,psamples

● Existing test filtering options can also be used:
○ -n|--name: filter by test name
○ -E|--filter-expr: filter by evaluating an expression on test's properties

Extending ReFrame with performance analytics
Examples I

● List the mean performance of a specific benchmark for the last 7 days:
○ --list-stored-testcases=now-7d:now/mean:/ -n StreamCUDA

● Assuming a multi-way parameterized benchmark, e.g., ParamTest %mode=foo %gpu=3, give me the mean
performance across all GPUs for all nodes and all benchmark modes for a specific driver:
○ --list-stored-testcases='?driver_version=="570.26"'/mean:name,mode,pvar,punit,job_nodelist/+psample
s -n ParamTest

● Compare all benchmark data between two driver versions:
○ --performance-compare='?driver_version=="570.26"'/'?driver_version=="560.28.03"'/median:/
○ NB: Assumes driver_version has been passed with --session-extras during the runs

● Show basic information of all sessions between two timestamps
○ --list-stored-sessions=20250110T0300:20250110T0500

● Dump a specific session in JSON:
○ --describe-stored-sessions=eba49e9c-81f2-45b7-8680-34a5c9e08ac2
○ You can use jq to filter the session info only: jq .[].session_info

Extending ReFrame with performance analytics
Examples II

● Feature is available in ReFrame >= 4.7
● Enable with RFM_ENABLE_RESULTS_STORAGE=y
● Optionally set the database file with RFM_SQLITE_DB_FILE=/path/to/results.db
○ Default: $HOME/.reframe/reports/results.db

karakasis@cluster-abc:~$ reframe --table-format=plain --performance-compare='?"nightly" in tag and "XXX" in gpu_part_no'/'?"nightly" in tag
and "YYY" in gpu_part_no'/mean:name,pvar,punit/ -n FooTestHost

name pvar punit pval_A pval_B pdiff

----------- ---------------- ------- -------- -------- -------

FooTestHost foo_bandwidth_1 GB/s 41.2099 40.6905 +1.28%

FooTestHost foo_bandwidth_2 GB/s 46.0236 45.6234 +0.88%

FooTestHost foo_bandwidth_3 GB/s 50.1933 50.1117 +0.16%

FooTestHost foo_bandwidth_4 GB/s 55.3926 55.3876 +0.01%

FooTestHost foo_bandwidth_5 GB/s 52.7173 52.709 +0.02%

FooTestHost foo_bandwidth_6 GB/s 55.5225 55.5224 +0.00%

FooTestHost foo_bandwidth_7 GB/s 51.5333 51.5287 +0.01%

FooTestHost foo_bandwidth_8 GB/s 49.3288 49.6312 -0.61%

FooTestHost foo_bandwidth_9 GB/s 55.5412 55.5424 -0.00%

FooTestHost foo_bandwidth_10 GB/s 51.5311 51.5329 -0.00%

Using ReFrame on our clusters

● We have to test each hardware component:
○ Each GPU
○ NVLink
○ Each InfiniBand HCA
■ Storage (Lustre)
■ Compute

○ Each CPU + RAM + CPU interconnect
○ Each PCIe link
○ Each NVMe SSD
○ Each network link / switch

RAID0 Lustre

CPU + RAM CPU + RAM

Compute IB Compute IB

PCIe

PCIe PCIe

PCIe

UPI

GPU

Lustre RAID0

GPU

PCIe PCIe

NVLink

Using ReFrame on our clusters

● Test setup
○ Run-only tests using containers launched with Enroot+Pyxis (container runtime) over Slurm

● Single node ReFrame performance tests: running automatically on every node every few days.
○ NCCL NVLink: https://github.com/NVIDIA/nccl-tests
○ nvbandwidth: https://github.com/NVIDIA/nvbandwidth
○ perftest: https://github.com/linux-rdma/perftest
○ STREAM: https://www.cs.virginia.edu/stream
○ fio: https://github.com/axboe/fio
○ …

● Multi-node ReFrame performance tests: running once a week, or as needed for validation of new software.
○ Distributed Pytorch training: https://github.com/pytorch/pytorch
○ OSU Benchmarks: https://mvapich.cse.ohio-state.edu/benchmarks/
○ NVIDIA NeMo: https://github.com/NVIDIA/NeMo
○ MLPerf Training: https://github.com/mlcommons/training_results_v4.1
○ NVIDIA HPC Benchmarks container (HPL, HPL-MxP, HPCG)
○ NCCL InfiniBand / Multi-Node NVLink

https://github.com/NVIDIA/nccl-tests
https://github.com/NVIDIA/nvbandwidth
https://github.com/linux-rdma/perftest
https://www.cs.virginia.edu/stream/
https://github.com/axboe/fio
https://github.com/pytorch/pytorch
https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/NVIDIA/NeMo
https://github.com/mlcommons/training_results_v4.1

Gitlab CI

● Gitlab CI is the interface used by our cluster admins to launch ReFrame
validation and performance checks

● For single node tests, we spawn CI jobs on every available node and launch
ReFrame locally collecting useful node information for later queries:
○ Driver version, VBIOS version, GPU and Board part numbers
○ CI pipeline and job IDs
○ CI branch name
○ Test pipeline and test suite type

● We use a single results database per cluster

GitLab CI: inspecting results

● JUnit report generated by ReFrame with
--report-junit

● Perf reference was:
○ 'mean': (3110.2, -0.05, 0.04, 'gflops'),

Conclusions & Future Work

● Support for basic performance analytics in ReFrame is a substantial improvement that helps users get insights quickly
on their performance data

● It's a feature orthogonal to existing performance logging and does not exclude external processing, rather facilitates it
● Modular design that allows alternative implementations for both the storage and analytics layers

Next steps:

● Collect and present more statistics over results at once (percentiles, mean, stddev etc.)
○ This will allow users to derive quickly performance references and bounds for tests

● Extend session selection syntax to support time periods and property filtering at the same time
○ This will optimize session queries on large databases as it will limit the filtering span

● Improve presentation of results
○ Support of filtering in/out columns for sessions
○ Allow users to name performance columns for A/B testing

● Import existing results (perflogs, reports) to the results DB
● Make the performance comparison feature easily accessible across our teams

