
Migrating Massive Aurora
and MySQL Databases

to Vitess Kubernetes Clusters
with Near-Zero Downtime

Matthias Crauwels, Rohit Nayak

Vitess is a scalable, distributed database system
built around MySQL

What is Vitess?
Cloud Native
Database

Massively Scalable

Highly Available MySQL
Compatible

Works With
Database
Frameworks

ORMs

Legacy Code Third-Party
Applications

Logical Database

Many Physical
Databases

Query
Routing

gRPC Clients
MySQL protocol

Single
Connection

@vitessio

Architecture
Keyspace

Cloud Native by Design
- Microservice-oriented design

- Decoupled components
- Containerizable
- Independent vertical and horizontal component scaling

- Horizontal and vertical sharding
- Leverage commodity hardware
- Leverage cloud scaling
- Massively scalable

- MySQL replication and semi-sync
- Resilient to storage unavailability

- Cluster management
- Automated failovers (vtorc), backup/restore
- Resilient to ephemeral instances

- Kubernetes integration (Vitess Operator)
- Auto-scaling, self-healing

- Global Availability, cloud platform agnostic

Why Migrate
- An example, user is on RDS
- Why migrate out

- Limited by vertical scaling
- Manual sharding
- Too expensive (storage/vm/data transfer)
- Lack of control over MySQL configuration/upgrades
- Vendor lock-in

- Why Vitess
- MySQL compatible
- Horizontal sharding
- Commodity hardware
- Online DDL for schema changes
- Cluster management

Step 1: Setup Vitess

- Create production Vitess cluster
- Sharding configuration

- 2 shards, primary + 2 replicas
- Provisioning

- topology (etcd)
- vtgates
- vttablets → local mysql servers
- vtctld/vtorc

- External keyspace
- unsharded
- vttablets → RDS

Step 2: MoveTables

- Create MoveTables workflow
- MoveTables Create
- Source = External Keyspace, Target = Vitess Keyspace
- Routing Rules → RDS
- Denied Tables on Target

- Point App to Vitess cluster

Step 3: Switch Reads
- MoveTables SwitchTraffic –tablet-types replica
- Primary traffic continues to be routed to RDS
- Monitor

- compatibility
- warm caches
- performance

Step 4: Switch Writes
- MoveTables SwitchTraffic –tablet-types primary
- All traffic routed to RDS
- Reverse replication to RDS

- MoveTables ReverseTraffic
- Monitor Write Performance

Step 5: Complete
- MoveTables Complete
- Deletes Reverse Workflow
- Point of No Return
- Deprovision RDS

Migration Workflow

- Target streams from source vttablets (replica/primary)
- Starts with a Copy phase

- One table at a time, in batches
- On Source: Take consistent snapshot, streaming select
- On Target: Bulk insert into target
- State maintained in a sidecar database.
- Between tables/batches, stream binary logs, with dmls for copied ranges

- Move to Running (binlog streaming) phase until cutover

target/-80

target/80-

External

rds/0

Copy Phase

Copy Phase

Binlog Playback

Binlog Playback

Vitess
ShardedMoveTables

Regular MySQL as source
- Binary logs are required

- When copying from a replica GTIDs and log_replica_updates are required
- binary log format = ROW
- binary log image = FULL

- 2 phases
- Copy phase

- Long running select - vreplication_copy_phase_duration (default 1h)
- Throttling

- History List Length - vreplication_copy_phase_max_innodb_history_list_length (default 1 million)
- Replication lag (source) - vreplication_copy_phase_max_mysql_replication_lag (default 12h)

- Catch Up phase
- After each chunk of the copy phase
- Apply binary log event for the already copied rows
- Avoids long catch up phase on large tables

Aurora MySQL as source
- No binary logs on Aurora readers

- Set up a replica Aurora cluster doing binary log replication from the main cluster
- Use the primary of this cluster as "replica" tablet

- Server UUID (GTID) is the same for all nodes on the source cluster
- Stream survives a Aurora failover

- When you don't have GTID (enabling requires an Aurora reboot) repoint vreplication to the primary cluster before
cutover

- STOP REPLICA on replica cluster
- SHOW BINARY LOG STATUS on replica cluster
- ensure vreplication catches up (File/Position from the previous output)
- SHOW REPLICA STATUS on replica-cluster

- fetch Source_Log_File and Executed_Source_Log_Pos
- stop vreplication workflow
- UPDATE _vt.replication SET pos = '...', tablet_types = 'PRIMARY' WHERE id = …; on target cluster(s)
- start vreplication workflow

Sharded MySQL / Vitess as source
- Shard by shard migration

- Sharded source keyspace
- Sharded target keyspace
- Same shard definitions for both source and target
- Requires vtgate flag --enable-partial-keyspace-migration
- MoveTables stream per shard

- Ability to copy in segments not to overload uplink
- Ability to switch-reads and switch-writes individually

- No "big bang" migration
- Fully reversible migrations

- ShardRoutingRules
- to be able to switch traffic on a per-shard basis

- Executed this with cluster up to 256 shards (not the hard limit)
- Some manual cleanup at the end

Multi-tenant migrations
- Multiple (identical) schema spread over 1 or more MySQL cluster(s)

- Unique tenant identifier required in all tables (immutable)
- Each source tenant is it's own external keyspace
- Queries should include WHERE <field_tenant_id> = … in all SELECT/UPDATE/DELETE statements
- Target schema

- Add <field_tenant_id> to PRIMARY KEY (required for uniqueness)
- Add <field_tenant_id> to secondary indexes (as first field to use for filtering)

- HowTo
- VSchema add multi_tenant_spec to the top-level JSON

 "multi_tenant_spec": {
 "tenant_id_column_name": "<field_tenant_id>",
 "tenant_id_column_type": "INT64"
 },

- MoveTables specify --tenant_id <value> during Create
- Merges 100s or 1000s of schema's into one (sharded) keyspace

Multi-tenant migrations (2)
- KeyspaceRoutingRules

- Introduced for multi-tenant migrations
- All keyspaces have the same tables
- Works very similar to normal RoutingRules and ShardRoutingRules

- When sharding the Vitess cluster on <field_tenant_id>
- option to specify --shards option to MoveTables Create

Numbers

- Thousands of vreplication imports to PlanetScale in self-serve mode
- 64TB to 16 shards
- millions of QPS across multiple Vitess clusters

- Copying multi-TB datasets to sharded Vitess in hours
- observed speeds over 1 billion rows per hour

- Multi-tenant migration with multiple 100-thousands of tenants ongoing
- multiple (large) Aurora clusters into one sharded keyspace
- 250TB to 128 shards
- ~9 million tables per source Aurora converging into 90 sharded-tables
- online DDL going from weeks to hours

- Shard-by-shard migration for over 400 shards completed successfully
- https://planetscale.com/case-studies/cash-app

- More case studies on https://planetscale.com/case-studies/

https://planetscale.com/case-studies/cash-app
https://planetscale.com/case-studies/

Thank you!
rohit@planetscale.com

matthias.crauwels@planetscale.com

mailto:rohit@planetscale.com
mailto:matthias.crauwels@planetscale.com

