
Tommaso Fontana, Sebastiano Vigna, Stefano Zacchiroli

Huge Graph Analysis on Your
Own Server with WebGraph in
Rust

Partially supported by project SERICS (PE00000014) under the NRRP MUR program funded by the EU - NGEU, and by project ANR COREGRAPHIE, grant ANR-20-
CE23-0002 of the French Agence Nationale de la Recherche

Michele Andreata, Lorenzo Cimini, Davide Cologni, Matteo Dell’Acqua, Dario Moschetti, Valentin Tablan, Matteo Zagheno

Graph Analytics at Scale

Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place

Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place

Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place

• Web snapshots, social networks, biological graphs, …

Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place

• Web snapshots, social networks, biological graphs, …

Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place

• Web snapshots, social networks, biological graphs, …

Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place

• Web snapshots, social networks, biological graphs, …

• Very large graphs require new approaches

Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place

• Web snapshots, social networks, biological graphs, …

• Very large graphs require new approaches

• Standard representations in main memory are either impossible (graph too
large) or very expensive (many TB of core memory)

Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place

• Web snapshots, social networks, biological graphs, …

• Very large graphs require new approaches

• Standard representations in main memory are either impossible (graph too
large) or very expensive (many TB of core memory)

• Distributed approaches spend a very large amount of time distributing data
among nodes

Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place

• Web snapshots, social networks, biological graphs, …

• Very large graphs require new approaches

• Standard representations in main memory are either impossible (graph too
large) or very expensive (many TB of core memory)

• Distributed approaches spend a very large amount of time distributing data
among nodes

• What can we do? Compression!

The WebGraph Framework

The WebGraph Framework
• An open source framework for compressed representation of graphs

http://webgraph.di.unimi.it/
https://github.com/commoncrawl/cc-webgraph

The WebGraph Framework
• An open source framework for compressed representation of graphs

• One of the most long-lived projects of this kind (>20 years!)

http://webgraph.di.unimi.it/
https://github.com/commoncrawl/cc-webgraph

The WebGraph Framework
• An open source framework for compressed representation of graphs

• One of the most long-lived projects of this kind (>20 years!)

• Hundreds of publications in major conferences and journals using it (>1500
references)

http://webgraph.di.unimi.it/
https://github.com/commoncrawl/cc-webgraph

The WebGraph Framework
• An open source framework for compressed representation of graphs

• One of the most long-lived projects of this kind (>20 years!)

• Hundreds of publications in major conferences and journals using it (>1500
references)

• In 2011 news went around the world: Facebook had four degrees of
separation

http://webgraph.di.unimi.it/
https://github.com/commoncrawl/cc-webgraph

The WebGraph Framework
• An open source framework for compressed representation of graphs

• One of the most long-lived projects of this kind (>20 years!)

• Hundreds of publications in major conferences and journals using it (>1500
references)

• In 2011 news went around the world: Facebook had four degrees of
separation

http://webgraph.di.unimi.it/
https://github.com/commoncrawl/cc-webgraph

The WebGraph Framework
• An open source framework for compressed representation of graphs

• One of the most long-lived projects of this kind (>20 years!)

• Hundreds of publications in major conferences and journals using it (>1500
references)

• In 2011 news went around the world: Facebook had four degrees of
separation

http://webgraph.di.unimi.it/
https://github.com/commoncrawl/cc-webgraph

The WebGraph Framework
• An open source framework for compressed representation of graphs

• One of the most long-lived projects of this kind (>20 years!)

• Hundreds of publications in major conferences and journals using it (>1500
references)

• In 2011 news went around the world: Facebook had four degrees of
separation

• The measurement was performed at Facebook in collaboration with our group
using WebGraph (at that time, 721 M nodes, 69 B links, just 211 GB!)

http://webgraph.di.unimi.it/
https://github.com/commoncrawl/cc-webgraph

The WebGraph Framework
• An open source framework for compressed representation of graphs

• One of the most long-lived projects of this kind (>20 years!)

• Hundreds of publications in major conferences and journals using it (>1500
references)

• In 2011 news went around the world: Facebook had four degrees of
separation

• The measurement was performed at Facebook in collaboration with our group
using WebGraph (at that time, 721 M nodes, 69 B links, just 211 GB!)

• Common Crawl distributes data using WebGraph

http://webgraph.di.unimi.it/
https://github.com/commoncrawl/cc-webgraph

Software Heritage History Graph THE GREAT LIBRARY OF SOURCE CODE

Software Heritage History Graph
• The largest public archive of public and git-style version control history

THE GREAT LIBRARY OF SOURCE CODE

Software Heritage History Graph
• The largest public archive of public and git-style version control history

• Data model: a Merkle direct acyclic graph (intuitively: a single git repository with the
development history of all public code)

THE GREAT LIBRARY OF SOURCE CODE

Software Heritage History Graph
• The largest public archive of public and git-style version control history

• Data model: a Merkle direct acyclic graph (intuitively: a single git repository with the
development history of all public code)

• One of the largest graphs of human activity available

THE GREAT LIBRARY OF SOURCE CODE

Software Heritage History Graph
• The largest public archive of public and git-style version control history

• Data model: a Merkle direct acyclic graph (intuitively: a single git repository with the
development history of all public code)

• One of the largest graphs of human activity available

• 44 billion nodes, 769 billion arcs (December 2024), represented by WebGraph in 251 GB
instead of >6 TB!

THE GREAT LIBRARY OF SOURCE CODE

Software Heritage History Graph
• The largest public archive of public and git-style version control history

• Data model: a Merkle direct acyclic graph (intuitively: a single git repository with the
development history of all public code)

• One of the largest graphs of human activity available

• 44 billion nodes, 769 billion arcs (December 2024), represented by WebGraph in 251 GB
instead of >6 TB!

• The previous Java WebGraph-based pipeline for graph analytics was born out of a
collaboration between Inria and the Università degli Studi di Milano

THE GREAT LIBRARY OF SOURCE CODE

Software Heritage History Graph
• The largest public archive of public and git-style version control history

• Data model: a Merkle direct acyclic graph (intuitively: a single git repository with the
development history of all public code)

• One of the largest graphs of human activity available

• 44 billion nodes, 769 billion arcs (December 2024), represented by WebGraph in 251 GB
instead of >6 TB!

• The previous Java WebGraph-based pipeline for graph analytics was born out of a
collaboration between Inria and the Università degli Studi di Milano

• Storing explicitly the graph makes it possible to perform provenance analysis, plagiarism
detection, clone detection, etc., at an unprecedented scale

THE GREAT LIBRARY OF SOURCE CODE

Software Heritage History Graph
• The largest public archive of public and git-style version control history

• Data model: a Merkle direct acyclic graph (intuitively: a single git repository with the
development history of all public code)

• One of the largest graphs of human activity available

• 44 billion nodes, 769 billion arcs (December 2024), represented by WebGraph in 251 GB
instead of >6 TB!

• The previous Java WebGraph-based pipeline for graph analytics was born out of a
collaboration between Inria and the Università degli Studi di Milano

• Storing explicitly the graph makes it possible to perform provenance analysis, plagiarism
detection, clone detection, etc., at an unprecedented scale

• Still, Java started to get in the way

THE GREAT LIBRARY OF SOURCE CODE

Moving to Rust

Moving to Rust
• A high-performance, safe language

Moving to Rust
• A high-performance, safe language

• Zero-cost abstractions

Moving to Rust
• A high-performance, safe language

• Zero-cost abstractions

• Arrays as large as memory allows

Moving to Rust
• A high-performance, safe language

• Zero-cost abstractions

• Arrays as large as memory allows

• Fine-grained access to OS facilities (memory mapping)

Moving to Rust
• A high-performance, safe language

• Zero-cost abstractions

• Arrays as large as memory allows

• Fine-grained access to OS facilities (memory mapping)

• Lazy iterators

Moving to Rust
• A high-performance, safe language

• Zero-cost abstractions

• Arrays as large as memory allows

• Fine-grained access to OS facilities (memory mapping)

• Lazy iterators

• Moving to Rust required porting or rethinking several key ideas

Crates

Crates
• ε-serde (epserde): ε-copy serialization/deserialization

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph

Crates
• ε-serde (epserde): ε-copy serialization/deserialization

• mem_dbg: fast memory footprint analysis

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph

Crates
• ε-serde (epserde): ε-copy serialization/deserialization

• mem_dbg: fast memory footprint analysis

• sux: succinct data structures

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph

Crates
• ε-serde (epserde): ε-copy serialization/deserialization

• mem_dbg: fast memory footprint analysis

• sux: succinct data structures

• dsi-bitstream: fast bit streams with support for several types of
instantaneous codes

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph

Crates
• ε-serde (epserde): ε-copy serialization/deserialization

• mem_dbg: fast memory footprint analysis

• sux: succinct data structures

• dsi-bitstream: fast bit streams with support for several types of
instantaneous codes

• dsi-progress-logger: time-based (concurrent) progress logger

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph

Crates
• ε-serde (epserde): ε-copy serialization/deserialization

• mem_dbg: fast memory footprint analysis

• sux: succinct data structures

• dsi-bitstream: fast bit streams with support for several types of
instantaneous codes

• dsi-progress-logger: time-based (concurrent) progress logger

• …and, of course, webgraph

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph

ε-serde

ε-serde
• ε-copy serialization and deserialization

ε-serde
• ε-copy serialization and deserialization

• Like zero-copy, without the limitations (and, of course, with other limitations)

ε-serde
• ε-copy serialization and deserialization

• Like zero-copy, without the limitations (and, of course, with other limitations)

• Unlike abomonation, it does not change the memory (e.g., you can map
immutable files into memory)

ε-serde
• ε-copy serialization and deserialization

• Like zero-copy, without the limitations (and, of course, with other limitations)

• Unlike abomonation, it does not change the memory (e.g., you can map
immutable files into memory)

• Unlike Zerovec, no impact on performance, and you use standard structures

ε-serde
• ε-copy serialization and deserialization

• Like zero-copy, without the limitations (and, of course, with other limitations)

• Unlike abomonation, it does not change the memory (e.g., you can map
immutable files into memory)

• Unlike Zerovec, no impact on performance, and you use standard structures

• Unlike rkiv, the structure you deserialize is the structure you serialize, and no
impact on performance

ε-serde
• ε-copy serialization and deserialization

• Like zero-copy, without the limitations (and, of course, with other limitations)

• Unlike abomonation, it does not change the memory (e.g., you can map
immutable files into memory)

• Unlike Zerovec, no impact on performance, and you use standard structures

• Unlike rkiv, the structure you deserialize is the structure you serialize, and no
impact on performance

• Requires collaboration from the underlying struct: the types you want to ε-
copy must be type parameters

ε-serde

ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

• Sequences (vectors, boxed slices, etc.) of zero-copy types are replaced by
references to slices, without any copying

ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

• Sequences (vectors, boxed slices, etc.) of zero-copy types are replaced by
references to slices, without any copying

• The rest of the structure, usually a small (ε-) fraction of the space occupancy, is
allocated normally

ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

• Sequences (vectors, boxed slices, etc.) of zero-copy types are replaced by
references to slices, without any copying

• The rest of the structure, usually a small (ε-) fraction of the space occupancy, is
allocated normally

• We use disjoint trait implementation based on an associated type to make the
framework behave in a different way for zero-copy and deep-copy types

ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

• Sequences (vectors, boxed slices, etc.) of zero-copy types are replaced by
references to slices, without any copying

• The rest of the structure, usually a small (ε-) fraction of the space occupancy, is
allocated normally

• We use disjoint trait implementation based on an associated type to make the
framework behave in a different way for zero-copy and deep-copy types

• After deserialization you get a structure containing references to the original
memory, and you need to pack it in a MemCase if you need to move it around

ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

• Sequences (vectors, boxed slices, etc.) of zero-copy types are replaced by
references to slices, without any copying

• The rest of the structure, usually a small (ε-) fraction of the space occupancy, is
allocated normally

• We use disjoint trait implementation based on an associated type to make the
framework behave in a different way for zero-copy and deep-copy types

• After deserialization you get a structure containing references to the original
memory, and you need to pack it in a MemCase if you need to move it around

• You cannot have references in the structure

Disjoint
Impls
PR #1672
RustyYato trick

Disjoint
Impls
PR #1672
RustyYato trick

pub struct Zero {}
pub struct Deep {}

pub trait CopyType: Sized {
 type Copy;
}

Disjoint
Impls
PR #1672
RustyYato trick

pub struct Zero {}
pub struct Deep {}

pub trait CopyType: Sized {
 type Copy;
}

pub trait ZeroCopy: CopyType<Copy = Zero> {}

impl<T: CopyType<Copy = Zero>> ZeroCopy for T {}

pub trait DeepCopy: CopyType<Copy = Deep> {}

impl<T: CopyType<Copy = Deep>> DeepCopy for T {}

Disjoint
Impls
PR #1672
RustyYato trick

pub struct Zero {}
pub struct Deep {}

pub trait CopyType: Sized {
 type Copy;
}

pub trait ZeroCopy: CopyType<Copy = Zero> {}

impl<T: CopyType<Copy = Zero>> ZeroCopy for T {}

pub trait DeepCopy: CopyType<Copy = Deep> {}

impl<T: CopyType<Copy = Deep>> DeepCopy for T {}

// This is not possible directly--you need a helper
struct and T: CopyType<Copy = Zero/Deep>
impl<T: ZeroCopy> Deserialize for T { ... }
impl<T: DeepCopy> Deserialize for T { ... }

Example

Example
#[derive(Epserde, Debug, PartialEq)]
struct MyStruct<A> {
 id: isize,
 data: A,
}

Example
#[derive(Epserde, Debug, PartialEq)]
struct MyStruct<A> {
 id: isize,
 data: A,
}

// Create a structure where A is a Vec<isize>
let s: MyStruct<Vec<isize>> = MyStruct { id: 0, data: vec![0, 1, 2, 3] };
// Serialize it
let mut file = std::env::temp_dir();
file.push("serialized");
s.store(&file);

Example
#[derive(Epserde, Debug, PartialEq)]
struct MyStruct<A> {
 id: isize,
 data: A,
}

// Create a structure where A is a Vec<isize>
let s: MyStruct<Vec<isize>> = MyStruct { id: 0, data: vec![0, 1, 2, 3] };
// Serialize it
let mut file = std::env::temp_dir();
file.push("serialized");
s.store(&file);

// Load the serialized form in a buffer
let b = std::fs::read(&file)?;

Example
#[derive(Epserde, Debug, PartialEq)]
struct MyStruct<A> {
 id: isize,
 data: A,
}

// Create a structure where A is a Vec<isize>
let s: MyStruct<Vec<isize>> = MyStruct { id: 0, data: vec![0, 1, 2, 3] };
// Serialize it
let mut file = std::env::temp_dir();
file.push("serialized");
s.store(&file);

// Load the serialized form in a buffer
let b = std::fs::read(&file)?;

// The type of t will be inferred--it is shown here only for clarity
let t: MyStruct<&[isize]> =
 <MyStruct<Vec<isize>>>::deserialize_eps(b.as_ref())?;

Example
#[derive(Epserde, Debug, PartialEq)]
struct MyStruct<A> {
 id: isize,
 data: A,
}

// Create a structure where A is a Vec<isize>
let s: MyStruct<Vec<isize>> = MyStruct { id: 0, data: vec![0, 1, 2, 3] };
// Serialize it
let mut file = std::env::temp_dir();
file.push("serialized");
s.store(&file);

// Load the serialized form in a buffer
let b = std::fs::read(&file)?;

// The type of t will be inferred--it is shown here only for clarity
let t: MyStruct<&[isize]> =
 <MyStruct<Vec<isize>>>::deserialize_eps(b.as_ref())?;

// This is a traditional deserialization instead
let t: MyStruct<Vec<isize>> =
 <MyStruct<Vec<isize>>>::load_full(&file)?;

Example
#[derive(Epserde, Debug, PartialEq)]
struct MyStruct<A> {
 id: isize,
 data: A,
}

// Create a structure where A is a Vec<isize>
let s: MyStruct<Vec<isize>> = MyStruct { id: 0, data: vec![0, 1, 2, 3] };
// Serialize it
let mut file = std::env::temp_dir();
file.push("serialized");
s.store(&file);

// Load the serialized form in a buffer
let b = std::fs::read(&file)?;

// The type of t will be inferred--it is shown here only for clarity
let t: MyStruct<&[isize]> =
 <MyStruct<Vec<isize>>>::deserialize_eps(b.as_ref())?;

// This is a traditional deserialization instead
let t: MyStruct<Vec<isize>> =
 <MyStruct<Vec<isize>>>::load_full(&file)?;

// In this case we map the data structure into memory
let u: MemCase<MyStruct<&[isize]>> =
 <MyStruct<Vec<isize>>>::mmap(&file, Flags::empty())?;

Example

Example

id

data
owned ptr

len
cap

* * * * * * * * * *

Construction time

Example

id

data
owned ptr

len
cap

* * * * * * * * * *

Construction time

id len * * * * * * * *

Serialized

Example

id

data
owned ptr

len
cap

* * * * * * * * * *

Construction time

id len * * * * * * * *

Serialized

id

data
ref

len

ε-deserialization

ε-serde

ε-serde
• In the previous example, you are supposed to write all read-only methods for

MyStruct using AsRef<&[isize]> as the type parameter: then they will work on
the ε-deserialized structure

ε-serde
• In the previous example, you are supposed to write all read-only methods for

MyStruct using AsRef<&[isize]> as the type parameter: then they will work on
the ε-deserialized structure

• Structures supporting ε-serde can be just used as a type parameter and they
will be ε-deserialized recursively

ε-serde
• In the previous example, you are supposed to write all read-only methods for

MyStruct using AsRef<&[isize]> as the type parameter: then they will work on
the ε-deserialized structure

• Structures supporting ε-serde can be just used as a type parameter and they
will be ε-deserialized recursively

• If you have several different such fields, you’ll have as many type parameters,
which can become a nuisance

ε-serde
• In the previous example, you are supposed to write all read-only methods for

MyStruct using AsRef<&[isize]> as the type parameter: then they will work on
the ε-deserialized structure

• Structures supporting ε-serde can be just used as a type parameter and they
will be ε-deserialized recursively

• If you have several different such fields, you’ll have as many type parameters,
which can become a nuisance

• If you think of your structure as a tree, only leaves reachable through a path of
ε-serde–supporting type parameters will be zero-copied (given that they can
be zero-copied)

mem_dbg

mem_dbg
• High-performance memory-occupancy detector

mem_dbg
• High-performance memory-occupancy detector

• Leverages on ε-serde’s notion of zero-copy data to avoid iterating on collections 
 
 
 
 
 
 

mem_dbg
• High-performance memory-occupancy detector

• Leverages on ε-serde’s notion of zero-copy data to avoid iterating on collections 
 
 
 
 
 
 

mem_dbg
• High-performance memory-occupancy detector

• Leverages on ε-serde’s notion of zero-copy data to avoid iterating on collections 
 
 
 
 
 
 

• Additionally, prints memory layouts, including padding

mem_dbg
• High-performance memory-occupancy detector

• Leverages on ε-serde’s notion of zero-copy data to avoid iterating on collections 
 
 
 
 
 
 

• Additionally, prints memory layouts, including padding

• By using the nightly offset_of_enum feature we can also display padding in enums

mem_dbg
• High-performance memory-occupancy detector

• Leverages on ε-serde’s notion of zero-copy data to avoid iterating on collections 
 
 
 
 
 
 

• Additionally, prints memory layouts, including padding

• By using the nightly offset_of_enum feature we can also display padding in enums

1.207 kB 100.00% ⏺: Struct<TestEnum, Data<alloc::vec::Vec<u8>>>
 16 B 1.33% ├╴a: readme::main::TestEnum
 │ ├╴Variant: Unnamed
 8 B 0.66% │ ├╴0: usize
 1 B 0.08% │ ╰╴1: u8 [6B]
1.183 kB 98.01% ├╴b: readme::main::Data<alloc::vec::Vec<u8>>
 724 B 59.98% │ ├╴a: alloc::vec::Vec<u8>
 424 B 35.13% │ ├╴b: alloc::vec::Vec<i32>
 35 B 2.90% │ ╰╴c: (u8, alloc::string::String)
 1 B 0.08% │ ├╴0: u8 [7B]
 27 B 2.24% │ ╰╴1: alloc::string::String
 8 B 0.66% ╰╴test: isize

sux

sux
• Succinct data structures: data structures using just the space of the information-theoretical

lower bound, but with operations asymptotically equivalent to standard structures

sux
• Succinct data structures: data structures using just the space of the information-theoretical

lower bound, but with operations asymptotically equivalent to standard structures

• For example, there are 4n binary trees, so it should be possible to represent a binary tree
using log 4n = 2n bits (Jacobson) instead of 2n log n

sux
• Succinct data structures: data structures using just the space of the information-theoretical

lower bound, but with operations asymptotically equivalent to standard structures

• For example, there are 4n binary trees, so it should be possible to represent a binary tree
using log 4n = 2n bits (Jacobson) instead of 2n log n

• Partial port of sux (C++ project) and Sux4J (Java project)

sux
• Succinct data structures: data structures using just the space of the information-theoretical

lower bound, but with operations asymptotically equivalent to standard structures

• For example, there are 4n binary trees, so it should be possible to represent a binary tree
using log 4n = 2n bits (Jacobson) instead of 2n log n

• Partial port of sux (C++ project) and Sux4J (Java project)

• There are some existing crates (some porting the projects above)

sux
• Succinct data structures: data structures using just the space of the information-theoretical

lower bound, but with operations asymptotically equivalent to standard structures

• For example, there are 4n binary trees, so it should be possible to represent a binary tree
using log 4n = 2n bits (Jacobson) instead of 2n log n

• Partial port of sux (C++ project) and Sux4J (Java project)

• There are some existing crates (some porting the projects above)

• Rank and selection

sux
• Succinct data structures: data structures using just the space of the information-theoretical

lower bound, but with operations asymptotically equivalent to standard structures

• For example, there are 4n binary trees, so it should be possible to represent a binary tree
using log 4n = 2n bits (Jacobson) instead of 2n log n

• Partial port of sux (C++ project) and Sux4J (Java project)

• There are some existing crates (some porting the projects above)

• Rank and selection

• Elias–Fano representation of monotone sequences (e.g., pointers into records)

sux
• Succinct data structures: data structures using just the space of the information-theoretical

lower bound, but with operations asymptotically equivalent to standard structures

• For example, there are 4n binary trees, so it should be possible to represent a binary tree
using log 4n = 2n bits (Jacobson) instead of 2n log n

• Partial port of sux (C++ project) and Sux4J (Java project)

• There are some existing crates (some porting the projects above)

• Rank and selection

• Elias–Fano representation of monotone sequences (e.g., pointers into records)

• Sorted string compression by prefix omission

sux
• Succinct data structures: data structures using just the space of the information-theoretical

lower bound, but with operations asymptotically equivalent to standard structures

• For example, there are 4n binary trees, so it should be possible to represent a binary tree
using log 4n = 2n bits (Jacobson) instead of 2n log n

• Partial port of sux (C++ project) and Sux4J (Java project)

• There are some existing crates (some porting the projects above)

• Rank and selection

• Elias–Fano representation of monotone sequences (e.g., pointers into records)

• Sorted string compression by prefix omission

• Fast bit vector and slices

sux

sux
• Mix-and-match of arbitrary rank and selection structures

https://crates.io/crates/ambassador

sux
• Mix-and-match of arbitrary rank and selection structures

• Functorial replacement of rank and selection structures (unsafe)

https://crates.io/crates/ambassador

sux
• Mix-and-match of arbitrary rank and selection structures

• Functorial replacement of rank and selection structures (unsafe)

• We use intensively the ambassador crate to delegate all rank, selection, and
bit-vector access traits, so you can write 
 
 
 

https://crates.io/crates/ambassador

sux
• Mix-and-match of arbitrary rank and selection structures

• Functorial replacement of rank and selection structures (unsafe)

• We use intensively the ambassador crate to delegate all rank, selection, and
bit-vector access traits, so you can write 
 
 
 

let bits = bit_vec![1, 0, 1, 1, 0, 1, 0, 1];
let rank9 = Rank9::new(bits);
let rank9_sel = SelectAdapt::new(rank9, 3);

https://crates.io/crates/ambassador

sux
• Mix-and-match of arbitrary rank and selection structures

• Functorial replacement of rank and selection structures (unsafe)

• We use intensively the ambassador crate to delegate all rank, selection, and
bit-vector access traits, so you can write 
 
 
 

• … and the last structure has also rank methods and access to the underlying
bit vector

let bits = bit_vec![1, 0, 1, 1, 0, 1, 0, 1];
let rank9 = Rank9::new(bits);
let rank9_sel = SelectAdapt::new(rank9, 3);

https://crates.io/crates/ambassador

sux

sux
• Comprehensive set of traits for indexed dictionaries

sux
• Comprehensive set of traits for indexed dictionaries

• Indexing, search, iteration, successor, predecessor, etc. in various forms

sux
• Comprehensive set of traits for indexed dictionaries

• Indexing, search, iteration, successor, predecessor, etc. in various forms

• Presently, main implementation is Elias–Fano

sux
• Comprehensive set of traits for indexed dictionaries

• Indexing, search, iteration, successor, predecessor, etc. in various forms

• Presently, main implementation is Elias–Fano

• Inner workings of the structure are selectable (or functorially modifiable)

sux
• Comprehensive set of traits for indexed dictionaries

• Indexing, search, iteration, successor, predecessor, etc. in various forms

• Presently, main implementation is Elias–Fano

• Inner workings of the structure are selectable (or functorially modifiable)

• Also, compact string storage by prefix omission

sux
• Comprehensive set of traits for indexed dictionaries

• Indexing, search, iteration, successor, predecessor, etc. in various forms

• Presently, main implementation is Elias–Fano

• Inner workings of the structure are selectable (or functorially modifiable)

• Also, compact string storage by prefix omission

• Main issue: lack of IndexGet or analogous trait makes access cumbersome

sux
• Comprehensive set of traits for indexed dictionaries

• Indexing, search, iteration, successor, predecessor, etc. in various forms

• Presently, main implementation is Elias–Fano

• Inner workings of the structure are selectable (or functorially modifiable)

• Also, compact string storage by prefix omission

• Main issue: lack of IndexGet or analogous trait makes access cumbersome

• E.g., a functionally implemented vector that returns i² on index i

sux
• Comprehensive set of traits for indexed dictionaries

• Indexing, search, iteration, successor, predecessor, etc. in various forms

• Presently, main implementation is Elias–Fano

• Inner workings of the structure are selectable (or functorially modifiable)

• Also, compact string storage by prefix omission

• Main issue: lack of IndexGet or analogous trait makes access cumbersome

• E.g., a functionally implemented vector that returns i² on index i

• Rust and intensional representations do not work very well together ATM

dsi-bitstream

dsi-bitstream
• High-performance bit streams

dsi-bitstream
• High-performance bit streams

• Read/write data by word (settable)

dsi-bitstream
• High-performance bit streams

• Read/write data by word (settable)

• Supports little and big endian files

dsi-bitstream
• High-performance bit streams

• Read/write data by word (settable)

• Supports little and big endian files

• Instantaneous codes for compression: Elias γ, Golomb, etc.

dsi-bitstream
• High-performance bit streams

• Read/write data by word (settable)

• Supports little and big endian files

• Instantaneous codes for compression: Elias γ, Golomb, etc.

• Flexible architecture and benchmarks to tune to your hardware (use decoding
tables or not?)

dsi-bitstream
• High-performance bit streams

• Read/write data by word (settable)

• Supports little and big endian files

• Instantaneous codes for compression: Elias γ, Golomb, etc.

• Flexible architecture and benchmarks to tune to your hardware (use decoding
tables or not?)

• A γ code read in less than 2 ns (for data with the intended distribution)

dsi-bitstream

dsi-bitstream
• Basic traits: BitRead<E> / Bitwrite<E> (E is the endianness)

dsi-bitstream
• Basic traits: BitRead<E> / Bitwrite<E> (E is the endianness)

• Extension traits like GammaRead / GammaWrite add code capabilities

dsi-bitstream
• Basic traits: BitRead<E> / Bitwrite<E> (E is the endianness)

• Extension traits like GammaRead / GammaWrite add code capabilities

• Implementations BufBitReader<E, WR, RP> and BufBitWriter<E, WW, WP>
depend on endianness and on the word size used to read or write data

dsi-bitstream
• Basic traits: BitRead<E> / Bitwrite<E> (E is the endianness)

• Extension traits like GammaRead / GammaWrite add code capabilities

• Implementations BufBitReader<E, WR, RP> and BufBitWriter<E, WW, WP>
depend on endianness and on the word size used to read or write data

• Moreover, the last parameter is a selector type that chooses whether to use
encoding/decoding tables or not for each code

dsi-bitstream
• Basic traits: BitRead<E> / Bitwrite<E> (E is the endianness)

• Extension traits like GammaRead / GammaWrite add code capabilities

• Implementations BufBitReader<E, WR, RP> and BufBitWriter<E, WW, WP>
depend on endianness and on the word size used to read or write data

• Moreover, the last parameter is a selector type that chooses whether to use
encoding/decoding tables or not for each code

• When reading, the internal bit buffer is twice the read word to make peeking
possible (for tables)

dsi-bitstream
• Basic traits: BitRead<E> / Bitwrite<E> (E is the endianness)

• Extension traits like GammaRead / GammaWrite add code capabilities

• Implementations BufBitReader<E, WR, RP> and BufBitWriter<E, WW, WP>
depend on endianness and on the word size used to read or write data

• Moreover, the last parameter is a selector type that chooses whether to use
encoding/decoding tables or not for each code

• When reading, the internal bit buffer is twice the read word to make peeking
possible (for tables)

• Presently WR = u32 and WW = u64 are the best choice

webgraph

webgraph
• Graph are represented by bitstreams

webgraph
• Graph are represented by bitstreams

• Uses dsi-bitstream for instantaneous codes, sux for pointers into the
bitstream

webgraph
• Graph are represented by bitstreams

• Uses dsi-bitstream for instantaneous codes, sux for pointers into the
bitstream

• On a Software Heritage graph with 34 billion nodes and 517 billion arcs a BFS
visit is three time faster than Java (3h)

webgraph
• Graph are represented by bitstreams

• Uses dsi-bitstream for instantaneous codes, sux for pointers into the
bitstream

• On a Software Heritage graph with 34 billion nodes and 517 billion arcs a BFS
visit is three time faster than Java (3h)

• Unbelievably better ergonomics WRT Java

webgraph
• Graph are represented by bitstreams

• Uses dsi-bitstream for instantaneous codes, sux for pointers into the
bitstream

• On a Software Heritage graph with 34 billion nodes and 517 billion arcs a BFS
visit is three time faster than Java (3h)

• Unbelievably better ergonomics WRT Java

• Graphs have n nodes numbered in [0 . . n).

webgraph
• Graph are represented by bitstreams

• Uses dsi-bitstream for instantaneous codes, sux for pointers into the
bitstream

• On a Software Heritage graph with 34 billion nodes and 517 billion arcs a BFS
visit is three time faster than Java (3h)

• Unbelievably better ergonomics WRT Java

• Graphs have n nodes numbered in [0 . . n).

• Access to the graph structure happens by enumerating pairs given by a node
(usize) and a (possibly labeled) successor list (IntoIterator<usize>)

webgraph

webgraph
• Compression happens by several techniques:

webgraph
• Compression happens by several techniques:

• Gap compression: lists are turned into gaps encoded via instantaneous
codes

webgraph
• Compression happens by several techniques:

• Gap compression: lists are turned into gaps encoded via instantaneous
codes

• Reference: lists are partially copied from other nodes with similar
successors

webgraph
• Compression happens by several techniques:

• Gap compression: lists are turned into gaps encoded via instantaneous
codes

• Reference: lists are partially copied from other nodes with similar
successors

• Intervalization: consecutive successors are stored as intervals

webgraph
• Compression happens by several techniques:

• Gap compression: lists are turned into gaps encoded via instantaneous
codes

• Reference: lists are partially copied from other nodes with similar
successors

• Intervalization: consecutive successors are stored as intervals

• Composition-based labeling

webgraph
• Compression happens by several techniques:

• Gap compression: lists are turned into gaps encoded via instantaneous
codes

• Reference: lists are partially copied from other nodes with similar
successors

• Intervalization: consecutive successors are stored as intervals

• Composition-based labeling

• Lender- (rather than Iterator-) based architecture, as we need to return items
depending on the lender state

webgraph

webgraph
• Permutation algorithms such as LLP provide node indices that improve

compression significantly

webgraph
• Permutation algorithms such as LLP provide node indices that improve

compression significantly

• Random-access enumeration of successor lists is lazy—lists of referenced
nodes are never materialized

webgraph
• Permutation algorithms such as LLP provide node indices that improve

compression significantly

• Random-access enumeration of successor lists is lazy—lists of referenced
nodes are never materialized

• Compact id space and lack of allocated structures to represent edges makes
the framework applicable to very large graphs

webgraph
• Permutation algorithms such as LLP provide node indices that improve

compression significantly

• Random-access enumeration of successor lists is lazy—lists of referenced
nodes are never materialized

• Compact id space and lack of allocated structures to represent edges makes
the framework applicable to very large graphs

• An important change with respect to the Java version is that sequential
enumeration of the arcs of a graph has no order guarantee

webgraph
• Permutation algorithms such as LLP provide node indices that improve

compression significantly

• Random-access enumeration of successor lists is lazy—lists of referenced
nodes are never materialized

• Compact id space and lack of allocated structures to represent edges makes
the framework applicable to very large graphs

• An important change with respect to the Java version is that sequential
enumeration of the arcs of a graph has no order guarantee

• Though there are marker traits to request that

webgraph

webgraph
• Basic trait: a SequentialLabeling 
 
 
 
 
 
 
 
 
 
 
 

webgraph
• Basic trait: a SequentialLabeling 
 
 
 
 
 
 
 
 
 
 
 

pub trait SequentialLabeling {
 type Label;
 type Lender<‘node>:
 for<'next> NodeLabelsLender<'next, Label = Self::Label>
 where
 Self: 'node;

 fn num_nodes(&self) -> usize;
 fn iter(&self) -> Self::Lender<'_>;
}

webgraph
• Basic trait: a SequentialLabeling 
 
 
 
 
 
 
 
 
 
 
 

• A sequential graph is a SequentialLabeling with usize labels

pub trait SequentialLabeling {
 type Label;
 type Lender<‘node>:
 for<'next> NodeLabelsLender<'next, Label = Self::Label>
 where
 Self: 'node;

 fn num_nodes(&self) -> usize;
 fn iter(&self) -> Self::Lender<'_>;
}

webgraph

webgraph
• Random access: 
 
 
 
 
 
 
 
 
 
 
 

webgraph
• Random access: 
 
 
 
 
 
 
 
 
 
 
 

pub trait RandomAccessLabeling: SequentialLabeling {
 type Labels<'succ>:
 IntoIterator<Item = <Self as SequentialLabeling>::Label>
 where
 Self: 'succ;

 fn num_arcs(&self) -> u64;
 fn labels(&self, node_id: usize) ->
 <Self as RandomAccessLabeling>::Labels<'_>;
 fn outdegree(&self, node_id: usize) -> usize;
}

webgraph
• Random access: 
 
 
 
 
 
 
 
 
 
 
 

• A random-access graph is a RandomAccessLabeling with usize labels

pub trait RandomAccessLabeling: SequentialLabeling {
 type Labels<'succ>:
 IntoIterator<Item = <Self as SequentialLabeling>::Label>
 where
 Self: 'succ;

 fn num_arcs(&self) -> u64;
 fn labels(&self, node_id: usize) ->
 <Self as RandomAccessLabeling>::Labels<'_>;
 fn outdegree(&self, node_id: usize) -> usize;
}

webgraph

webgraph
• We use lenders based on higher-rank trait bounds (Lender crate, based on

Sabrina Jewson’s idea)

webgraph
• We use lenders based on higher-rank trait bounds (Lender crate, based on

Sabrina Jewson’s idea)

• GAT-based lenders require the lender to be 'static, which is a no-no for us

webgraph
• We use lenders based on higher-rank trait bounds (Lender crate, based on

Sabrina Jewson’s idea)

• GAT-based lenders require the lender to be 'static, which is a no-no for us

pub trait Lender {
 type Item<'this>
 where
 Self: 'a;

 fn next(&mut self) -> Option<Self::Item<'_>>;
}

webgraph
• We use lenders based on higher-rank trait bounds (Lender crate, based on

Sabrina Jewson’s idea)

• GAT-based lenders require the lender to be 'static, which is a no-no for us

webgraph
• We use lenders based on higher-rank trait bounds (Lender crate, based on

Sabrina Jewson’s idea)

• GAT-based lenders require the lender to be 'static, which is a no-no for us

pub trait Lending<'a, __ImplBound = &'a Self> {
 type Lend: 'a;
}

pub trait Lender: for<'a /* where Self: 'a */> Lending<'a> {
 fn next(&mut self) -> Option<<Self as Lending<'_>::Lend>;
}

webgraph

webgraph
• This not enough for us

webgraph
• This not enough for us

• For example, when iterating over a graph obtained by sorting source/target
pairs (e.g., a transpose), we need the iterator on successors to modify the
state of the lender

webgraph
• This not enough for us

• For example, when iterating over a graph obtained by sorting source/target
pairs (e.g., a transpose), we need the iterator on successors to modify the
state of the lender

• Suggestion by quinedot on the Rust Language Forum:

webgraph
• This not enough for us

• For example, when iterating over a graph obtained by sorting source/target
pairs (e.g., a transpose), we need the iterator on successors to modify the
state of the lender

• Suggestion by quinedot on the Rust Language Forum:

pub trait NodeLabelsLender<'a, __ImplBound = &'a Self>:
 Lender + Lending<'a, __ImplBound, Lend = (usize, Self::IntoIterator)>
{
 type Label;
 type IntoIterator: IntoIterator<Item = Self::Label>;
}

Performance
Graph Nodes Arcs Avg.

Degree b/arc Size
(comp.)

dblp-2010 326K 1.6M 4.95 6.78 1.4MB

hollywood-2011 2M 229M 105.00 4.89 140MB

enwiki-2023 4.2M 101M 24.93 13.55 267MB

in-2004 41M 1.1G 27.87 1.41 250MB

webbase-2001 118M 1G 8.63 2.78 399MB

twitter-2010 41M 1.4G 35.25 13.90 2.5GB

eu-2015 1G 92G 85.74 1.19 13GB

swh-2023 34G 491G 14.38 3.07 176GB

Java Rust speedup Java Rust speedup

Graph Random access (ns/arc) BFS visit (ns/node)

dblp-2010 96 50 × 1.92 604 220 × 2.75

hollywood-2011 51 27 × 1.88 7520 2620 × 2.87

enwiki-2023 61 31 × 1.97 1450 734 × 1.98

in-2004 70 37 × 1.89 735 369 × 1.99

webbase-2001 114 73 × 1.56 665 322 × 2.07

twitter-2010 73 38 × 1.92 2650 1270 × 2.09

eu-2015 24 17 × 1.41 1580 971 × 1.63

swh-2023 104 47 × 2.21 1140 359 × 3.18

Conclusion

Conclusion
• This journey started in April 2023 and it has been a blast

Conclusion
• This journey started in April 2023 and it has been a blast

• It was very surprising for me that we were able to port and, in fact, massively
improve the design and implementation of a codebase that had been
accumulating for 20 years

Conclusion
• This journey started in April 2023 and it has been a blast

• It was very surprising for me that we were able to port and, in fact, massively
improve the design and implementation of a codebase that had been
accumulating for 20 years

• Graph traversals, graph algorithms, etc., are on their way

Conclusion
• This journey started in April 2023 and it has been a blast

• It was very surprising for me that we were able to port and, in fact, massively
improve the design and implementation of a codebase that had been
accumulating for 20 years

• Graph traversals, graph algorithms, etc., are on their way

• We would like to thank Valentin Lorentz at Software Heritage for a lot of
improvements and suggestions (and for being our guinea pig)

Conclusion
• This journey started in April 2023 and it has been a blast

• It was very surprising for me that we were able to port and, in fact, massively
improve the design and implementation of a codebase that had been
accumulating for 20 years

• Graph traversals, graph algorithms, etc., are on their way

• We would like to thank Valentin Lorentz at Software Heritage for a lot of
improvements and suggestions (and for being our guinea pig)

• And we would like to thank the community of the Rust Language Forum,
without which none of this would have ever happened

Conclusion
• This journey started in April 2023 and it has been a blast

• It was very surprising for me that we were able to port and, in fact, massively
improve the design and implementation of a codebase that had been
accumulating for 20 years

• Graph traversals, graph algorithms, etc., are on their way

• We would like to thank Valentin Lorentz at Software Heritage for a lot of
improvements and suggestions (and for being our guinea pig)

• And we would like to thank the community of the Rust Language Forum,
without which none of this would have ever happened

• And my students, without whom we would be far behind schedule

Questions?

