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Graph Analytics at Scale
• Today we found huge graphs (>100B arcs) all over the place

• Web snapshots, social networks, biological graphs, …

• Very large graphs require new approaches

• Standard representations in main memory are either impossible (graph too 
large) or very expensive (many TB of core memory)

• Distributed approaches spend a very large amount of time distributing data 
among nodes

• What can we do? Compression!
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The WebGraph Framework
• An open source framework for compressed representation of graphs

• One of the most long-lived projects of this kind (>20 years!)

• Hundreds of publications in major conferences and journals using it (>1500 
references)

• In 2011 news went around the world: Facebook had four degrees of 
separation

• The measurement was performed at Facebook in collaboration with our group 
using WebGraph (at that time, 721 M nodes, 69 B links, just 211 GB!)

• Common Crawl distributes data using WebGraph

http://webgraph.di.unimi.it/
https://github.com/commoncrawl/cc-webgraph
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Software Heritage History Graph
• The largest public archive of public and git-style version control history

• Data model: a Merkle direct acyclic graph (intuitively: a single git repository with the 
development history of all public code)

• One of the largest graphs of human activity available

• 44 billion nodes, 769 billion arcs (December 2024), represented by WebGraph in 251 GB 
instead of >6 TB!

• The previous Java WebGraph-based pipeline for graph analytics was born out of a 
collaboration between Inria and the Università degli Studi di Milano

• Storing explicitly the graph makes it possible to perform provenance analysis, plagiarism 
detection, clone detection, etc., at an unprecedented scale

• Still, Java started to get in the way

THE GREAT LIBRARY OF SOURCE CODE
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Moving to Rust
• A high-performance, safe language

• Zero-cost abstractions

• Arrays as large as memory allows

• Fine-grained access to OS facilities (memory mapping)

• Lazy iterators

• Moving to Rust required porting or rethinking several key ideas



Crates



Crates
• ε-serde (epserde): ε-copy serialization/deserialization

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph


Crates
• ε-serde (epserde): ε-copy serialization/deserialization

• mem_dbg: fast memory footprint analysis

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph


Crates
• ε-serde (epserde): ε-copy serialization/deserialization

• mem_dbg: fast memory footprint analysis

• sux: succinct data structures

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph


Crates
• ε-serde (epserde): ε-copy serialization/deserialization

• mem_dbg: fast memory footprint analysis

• sux: succinct data structures

• dsi-bitstream: fast bit streams with support for several types of 
instantaneous codes

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph


Crates
• ε-serde (epserde): ε-copy serialization/deserialization

• mem_dbg: fast memory footprint analysis

• sux: succinct data structures

• dsi-bitstream: fast bit streams with support for several types of 
instantaneous codes

• dsi-progress-logger: time-based (concurrent) progress logger

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
https://crates.io/crates/dsi-progress-logger
https://crates.io/crates/webgraph


Crates
• ε-serde (epserde): ε-copy serialization/deserialization

• mem_dbg: fast memory footprint analysis

• sux: succinct data structures

• dsi-bitstream: fast bit streams with support for several types of 
instantaneous codes

• dsi-progress-logger: time-based (concurrent) progress logger

• …and, of course, webgraph

https://crates.io/crates/epserde
https://crates.io/crates/mem_dbg
https://crates.io/crates/sux
https://crates.io/crates/dsi-bitstream
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ε-serde
• ε-copy serialization and deserialization

• Like zero-copy, without the limitations (and, of course, with other limitations)

• Unlike abomonation, it does not change the memory (e.g., you can map 
immutable files into memory)

• Unlike Zerovec, no impact on performance, and you use standard structures

• Unlike rkiv, the structure you deserialize is the structure you serialize, and no 
impact on performance

• Requires collaboration from the underlying struct: the types you want to ε-
copy must be type parameters 



ε-serde



ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)



ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

• Sequences (vectors, boxed slices, etc.) of zero-copy types are replaced by 
references to slices, without any copying



ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

• Sequences (vectors, boxed slices, etc.) of zero-copy types are replaced by 
references to slices, without any copying

• The rest of the structure, usually a small (ε-) fraction of the space occupancy, is 
allocated normally



ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

• Sequences (vectors, boxed slices, etc.) of zero-copy types are replaced by 
references to slices, without any copying

• The rest of the structure, usually a small (ε-) fraction of the space occupancy, is 
allocated normally

• We use disjoint trait implementation based on an associated type to make the 
framework behave in a different way for zero-copy and deep-copy types



ε-serde
• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

• Sequences (vectors, boxed slices, etc.) of zero-copy types are replaced by 
references to slices, without any copying

• The rest of the structure, usually a small (ε-) fraction of the space occupancy, is 
allocated normally

• We use disjoint trait implementation based on an associated type to make the 
framework behave in a different way for zero-copy and deep-copy types

• After deserialization you get a structure containing references to the original 
memory, and you need to pack it in a MemCase if you need to move it around
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• Types are zero-copy (ZeroCopy trait) or deep-copy (DeepCopy trait)

• Sequences (vectors, boxed slices, etc.) of zero-copy types are replaced by 
references to slices, without any copying

• The rest of the structure, usually a small (ε-) fraction of the space occupancy, is 
allocated normally

• We use disjoint trait implementation based on an associated type to make the 
framework behave in a different way for zero-copy and deep-copy types

• After deserialization you get a structure containing references to the original 
memory, and you need to pack it in a MemCase if you need to move it around

• You cannot have references in the structure
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Disjoint 
Impls 
PR #1672 
RustyYato trick

pub struct Zero {} 
pub struct Deep {} 

pub trait CopyType: Sized { 
    type Copy; 
}

pub trait ZeroCopy: CopyType<Copy = Zero> {} 

impl<T: CopyType<Copy = Zero>> ZeroCopy for T {} 

pub trait DeepCopy: CopyType<Copy = Deep> {} 

impl<T: CopyType<Copy = Deep>> DeepCopy for T {}

// This is not possible directly--you need a helper 
struct and T: CopyType<Copy = Zero/Deep> 
impl<T: ZeroCopy> Deserialize for T { ... } 
impl<T: DeepCopy> Deserialize for T { ... }



Example



Example
#[derive(Epserde, Debug, PartialEq)] 
struct MyStruct<A> { 
    id: isize, 
    data: A, 
}



Example
#[derive(Epserde, Debug, PartialEq)] 
struct MyStruct<A> { 
    id: isize, 
    data: A, 
}

// Create a structure where A is a Vec<isize> 
let s: MyStruct<Vec<isize>> = MyStruct { id: 0, data: vec![0, 1, 2, 3] }; 
// Serialize it 
let mut file = std::env::temp_dir(); 
file.push("serialized"); 
s.store(&file);



Example
#[derive(Epserde, Debug, PartialEq)] 
struct MyStruct<A> { 
    id: isize, 
    data: A, 
}

// Create a structure where A is a Vec<isize> 
let s: MyStruct<Vec<isize>> = MyStruct { id: 0, data: vec![0, 1, 2, 3] }; 
// Serialize it 
let mut file = std::env::temp_dir(); 
file.push("serialized"); 
s.store(&file);

// Load the serialized form in a buffer 
let b = std::fs::read(&file)?;



Example
#[derive(Epserde, Debug, PartialEq)] 
struct MyStruct<A> { 
    id: isize, 
    data: A, 
}

// Create a structure where A is a Vec<isize> 
let s: MyStruct<Vec<isize>> = MyStruct { id: 0, data: vec![0, 1, 2, 3] }; 
// Serialize it 
let mut file = std::env::temp_dir(); 
file.push("serialized"); 
s.store(&file);

// Load the serialized form in a buffer 
let b = std::fs::read(&file)?;

// The type of t will be inferred--it is shown here only for clarity 
let t: MyStruct<&[isize]> = 
    <MyStruct<Vec<isize>>>::deserialize_eps(b.as_ref())?;



Example
#[derive(Epserde, Debug, PartialEq)] 
struct MyStruct<A> { 
    id: isize, 
    data: A, 
}

// Create a structure where A is a Vec<isize> 
let s: MyStruct<Vec<isize>> = MyStruct { id: 0, data: vec![0, 1, 2, 3] }; 
// Serialize it 
let mut file = std::env::temp_dir(); 
file.push("serialized"); 
s.store(&file);

// Load the serialized form in a buffer 
let b = std::fs::read(&file)?;

// The type of t will be inferred--it is shown here only for clarity 
let t: MyStruct<&[isize]> = 
    <MyStruct<Vec<isize>>>::deserialize_eps(b.as_ref())?;

// This is a traditional deserialization instead 
let t: MyStruct<Vec<isize>> = 
    <MyStruct<Vec<isize>>>::load_full(&file)?;



Example
#[derive(Epserde, Debug, PartialEq)] 
struct MyStruct<A> { 
    id: isize, 
    data: A, 
}

// Create a structure where A is a Vec<isize> 
let s: MyStruct<Vec<isize>> = MyStruct { id: 0, data: vec![0, 1, 2, 3] }; 
// Serialize it 
let mut file = std::env::temp_dir(); 
file.push("serialized"); 
s.store(&file);

// Load the serialized form in a buffer 
let b = std::fs::read(&file)?;

// The type of t will be inferred--it is shown here only for clarity 
let t: MyStruct<&[isize]> = 
    <MyStruct<Vec<isize>>>::deserialize_eps(b.as_ref())?;

// This is a traditional deserialization instead 
let t: MyStruct<Vec<isize>> = 
    <MyStruct<Vec<isize>>>::load_full(&file)?;

// In this case we map the data structure into memory 
let u: MemCase<MyStruct<&[isize]>> = 
    <MyStruct<Vec<isize>>>::mmap(&file, Flags::empty())?; 
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ε-serde
• In the previous example, you are supposed to write all read-only methods for 

MyStruct using AsRef<&[isize]> as the type parameter: then they will work on 
the ε-deserialized structure

• Structures supporting ε-serde can be just used as a type parameter and they 
will be ε-deserialized recursively

• If you have several different such fields, you’ll have as many type parameters, 
which can become a nuisance

• If you think of your structure as a tree, only leaves reachable through a path of 
ε-serde–supporting type parameters will be zero-copied (given that they can 
be zero-copied)
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mem_dbg
• High-performance memory-occupancy detector

• Leverages on ε-serde’s notion of zero-copy data to avoid iterating on collections 
 
 
 
 
 
 

• Additionally, prints memory layouts, including padding

• By using the nightly offset_of_enum feature we can also display padding in enums

1.207 kB 100.00% ⏺: Struct<TestEnum, Data<alloc::vec::Vec<u8>>> 
   16  B   1.33% ├╴a: readme::main::TestEnum 
                 │ ├╴Variant: Unnamed 
    8  B   0.66% │ ├╴0: usize 
    1  B   0.08% │ ╰╴1: u8 [6B] 
1.183 kB  98.01% ├╴b: readme::main::Data<alloc::vec::Vec<u8>> 
  724  B  59.98% │ ├╴a: alloc::vec::Vec<u8> 
  424  B  35.13% │ ├╴b: alloc::vec::Vec<i32> 
   35  B   2.90% │ ╰╴c: (u8, alloc::string::String) 
    1  B   0.08% │   ├╴0: u8 [7B] 
   27  B   2.24% │   ╰╴1: alloc::string::String 
    8  B   0.66% ╰╴test: isize 
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sux
• Succinct data structures: data structures using just the space of the information-theoretical 

lower bound, but with operations asymptotically equivalent to standard structures

• For example, there are 4n binary trees, so it should be possible to represent a binary tree 
using log 4n = 2n bits (Jacobson) instead of 2n log n

• Partial port of sux (C++ project) and Sux4J (Java project)

• There are some existing crates (some porting the projects above)

• Rank and selection

• Elias–Fano representation of monotone sequences (e.g., pointers into records)

• Sorted string compression by prefix omission

• Fast bit vector and slices
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let bits = bit_vec![1, 0, 1, 1, 0, 1, 0, 1]; 
let rank9 = Rank9::new(bits); 
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https://crates.io/crates/ambassador


sux
• Mix-and-match of arbitrary rank and selection structures

• Functorial replacement of rank and selection structures (unsafe)

• We use intensively the ambassador crate to delegate all rank, selection, and 
bit-vector access traits, so you can write 
 
 
 

• … and the last structure has also rank methods and access to the underlying 
bit vector

let bits = bit_vec![1, 0, 1, 1, 0, 1, 0, 1]; 
let rank9 = Rank9::new(bits); 
let rank9_sel = SelectAdapt::new(rank9, 3);

https://crates.io/crates/ambassador
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• Comprehensive set of traits for indexed dictionaries

• Indexing, search, iteration, successor, predecessor, etc. in various forms

• Presently, main implementation is Elias–Fano

• Inner workings of the structure are selectable (or functorially modifiable)

• Also, compact string storage by prefix omission

• Main issue: lack of IndexGet or analogous trait makes access cumbersome

• E.g., a functionally implemented vector that returns i² on index i

• Rust and intensional representations do not work very well together ATM
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• High-performance bit streams

• Read/write data by word (settable)

• Supports little and big endian files

• Instantaneous codes for compression: Elias γ, Golomb, etc.

• Flexible architecture and benchmarks to tune to your hardware (use decoding 
tables or not?)

• A γ code read in less than 2 ns (for data with the intended distribution)
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dsi-bitstream
• Basic traits: BitRead<E> / Bitwrite<E> (E is the endianness)

• Extension traits like GammaRead / GammaWrite add code capabilities

• Implementations BufBitReader<E, WR, RP> and BufBitWriter<E, WW, WP> 
depend on endianness and on the word size used to read or write data

• Moreover, the last parameter is a selector type that chooses whether to use 
encoding/decoding tables or not for each code

• When reading, the internal bit buffer is twice the read word to make peeking 
possible (for tables)

• Presently WR = u32 and WW = u64 are the best choice
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webgraph
• Graph are represented by bitstreams

• Uses dsi-bitstream for instantaneous codes, sux for pointers into the 
bitstream

• On a Software Heritage graph with 34 billion nodes and 517 billion arcs a BFS 
visit is three time faster than Java (3h)

• Unbelievably better ergonomics WRT Java

• Graphs have n nodes numbered in [0 . . n).

• Access to the graph structure happens by enumerating pairs given by a node 
(usize) and a (possibly labeled) successor list (IntoIterator<usize>)
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• Compression happens by several techniques:

• Gap compression: lists are turned into gaps encoded via instantaneous 
codes

• Reference: lists are partially copied from other nodes with similar 
successors

• Intervalization: consecutive successors are stored as intervals

• Composition-based labeling

• Lender- (rather than Iterator-) based architecture, as we need to return items 
depending on the lender state
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webgraph
• Permutation algorithms such as LLP provide node indices that improve 

compression significantly

• Random-access enumeration of successor lists is lazy—lists of referenced 
nodes are never materialized

• Compact id space and lack of allocated structures to represent edges makes 
the framework applicable to very large graphs

• An important change with respect to the Java version is that sequential 
enumeration of the arcs of a graph has no order guarantee

• Though there are marker traits to request that
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• A sequential graph is a SequentialLabeling with usize labels

pub trait SequentialLabeling { 
    type Label; 
    type Lender<‘node>: 
         for<'next> NodeLabelsLender<'next, Label = Self::Label> 
    where 
        Self: 'node; 

    fn num_nodes(&self) -> usize; 
    fn iter(&self) -> Self::Lender<'_>; 
}
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• A random-access graph is a RandomAccessLabeling with usize labels

pub trait RandomAccessLabeling: SequentialLabeling { 
    type Labels<'succ>:  
        IntoIterator<Item = <Self as SequentialLabeling>::Label> 
    where 
        Self: 'succ; 

   fn num_arcs(&self) -> u64; 
   fn labels(&self, node_id: usize) ->  
        <Self as RandomAccessLabeling>::Labels<'_>; 
   fn outdegree(&self, node_id: usize) -> usize; 
} 
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• We use lenders based on higher-rank trait bounds (Lender crate, based on 

Sabrina Jewson’s idea)

• GAT-based lenders require the lender to be 'static, which is a no-no for us

pub trait Lending<'a, __ImplBound = &'a Self> { 
   type Lend: 'a; 
} 

pub trait Lender: for<'a /* where Self: 'a */> Lending<'a> { 
   fn next(&mut self) -> Option<<Self as Lending<'_>::Lend>; 
} 
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webgraph
• This not enough for us

• For example, when iterating over a graph obtained by sorting source/target 
pairs (e.g., a transpose), we need the iterator on successors to modify the 
state of the lender

• Suggestion by quinedot on the Rust Language Forum:

pub trait NodeLabelsLender<'a, __ImplBound = &'a Self>: 
    Lender + Lending<'a, __ImplBound, Lend = (usize, Self::IntoIterator)> 
{ 
    type Label; 
    type IntoIterator: IntoIterator<Item = Self::Label>; 
} 



Performance
Graph Nodes Arcs Avg. 

Degree b/arc Size 
(comp.)

dblp-2010 326K 1.6M 4.95 6.78 1.4MB

hollywood-2011 2M 229M 105.00 4.89 140MB

enwiki-2023 4.2M 101M 24.93 13.55 267MB

in-2004 41M 1.1G 27.87 1.41 250MB

webbase-2001 118M 1G 8.63 2.78 399MB

twitter-2010 41M 1.4G 35.25 13.90 2.5GB

eu-2015 1G 92G 85.74 1.19 13GB

swh-2023 34G 491G 14.38 3.07 176GB

Java Rust speedup Java Rust speedup

Graph Random access (ns/arc) BFS visit (ns/node)

dblp-2010 96 50 × 1.92 604 220 × 2.75

hollywood-2011 51 27 × 1.88 7520 2620 × 2.87

enwiki-2023 61 31 × 1.97 1450 734 × 1.98

in-2004 70 37 × 1.89 735 369 × 1.99

webbase-2001 114 73 × 1.56 665 322 × 2.07

twitter-2010 73 38 × 1.92 2650 1270 × 2.09

eu-2015 24 17 × 1.41 1580 971 × 1.63

swh-2023 104 47 × 2.21 1140 359 × 3.18
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Conclusion
• This journey started in April 2023 and it has been a blast

• It was very surprising for me that we were able to port and, in fact, massively 
improve the design and implementation of a codebase that had been 
accumulating for 20 years

• Graph traversals, graph algorithms, etc., are on their way

• We would like to thank Valentin Lorentz at Software Heritage for a lot of 
improvements and suggestions (and for being our guinea pig)

• And we would like to thank the community of the Rust Language Forum, 
without which none of this would have ever happened

• And my students, without whom we would be far behind schedule



Questions?


