Building reliable and scalable
apps with Distributed Actors

Jaleel Akbashev, 01.02.2025

Distributed actors

* Understanding Distributed Actors in Swift
https://drive.google.com/file/d/1JoCkBSXQAIUO5SBWICcPiIdBNxX8 XwWEVFX/
view?usp=sharing

* Meet distributed actors in Swift
https://developer.apple.com/videos/play/wwdc2022/110356/

https://developer.apple.com/videos/play/wwdc2022/110356/

Before we start

 What is reliability and scalability?

 Why we need distributed systems?

Reliability

The system’s ability to consistently perform its intended function, even in the
presence of failures.

* Fault Tolerance: The ability to recover from node or component failures
without significant downtime or data loss.

 Consistency Guarantees: Ensuring data correctness and state
synchronization across nodes.

* Availability: How consistently the system remains operational and
responsive.

Scalability

The ability of a system to handle increased workload or demand by
proportionally expanding its resources.

* Vertical Scalability: Increasing the capacity of individual components (e.g.,
adding more CPU or memory to a single server).

* Horizontal Scalability: Adding more nodes to a system or cluster to
distribute the workload.

Why we need distributed
systems?

Sea of concurrency
4

Sea of concurrency
oo

L 4
2 4

&
L 3
& &
Y 4
’ A
Y 4
Y 4
g -
f'o
- ,
LN . ‘
LS Y 4
LS Y 4
N
L 3

4
I 4

)

We.

Fault tolerance

Nation Research

_P FREECIV.NET Turn Done (59s)

.\»- ’i : . . s X .\: ﬁ‘ .' b _41. " "'"; : . v- »"—‘ :-:l“ BT > .- 5 —— . -

Toulouse = "11-
Year: 1768 AD

4 |
A
A

' 2

L NEPC Lo, SN AN
French Population: 440000 Turn: 259 Gold: 2183 (+74) Tax: 80 Lux: 20 Sci: 0

‘---‘T---------
|

1

I-----T---

Istributed ocean

Istributed ocean

4---.------------.--.-

Distributed system

Distributed Swift

Distributed Swift

Build systems that run distributed code across multiple processes and devices

* https://developer.apple.com/documentation/distributed

 |Language feature

* “Bring your own runtime” mindset

https://developer.apple.com/documentation/distributed

Example

TicTacFish: Implementing a game using distributed actors

 Meet distributed actors in Swift
https://developer.apple.com/videos/play/wwdc2022/110356/

e https://developer.apple.com/documentation/swift/
tictacfish implementing a game using distributed actors

https://developer.apple.com/videos/play/wwdc2022/110356/

Example L -

Tic Tac Fish &x

Playing online

My Player Opponent

Fish Mouse

 WebSocketActorSystem (WebSocket)

o SamplelocalNetworkActorSystem (Network Framework)

Distributed systems Is a
complicated topic

e How nodes find each other?
* \What happens when node dies”

* HoOw messages are transported and
serialized”?

 How to behave when messages are
failed to deliver?

Swift Distributed Actors Cluster Library

Peer-to-peer cluster implementation for Swift Distributed Actors

o https://qgithub.com/apple/swift-distributed-actors

https://github.com/apple/swift-distributed-actors

Swift Distributed Actors Cluster Library

Peer-to-peer cluster implementation for Swift Distributed Actors

 Nodes can join and leave the cluster dynamically, and the library ensures the
state of the cluster is updated consistently across all nodes, it uses SWIM
(Scalable Weakly-consistent Infection-style Membership) for managing cluster
membership efficiently.

» Library includes serialization mechanisms to encode and decode actor
messages and abstracts over the transport layer.

Example L -

Tic Tac Fish &x

Playing online

My Player Opponent

Fish Mouse

 WebSocketActorSystem (WebSocket)

o SamplelocalNetworkActorSystem (Network Framework)

\/—\

Le
t's
upd e
ate the
gam
e

Before we start

 How to form nodes and create actors?

import DistributedCluster

let sealNode = await ClusterSystem("sea 1") {
$0.endpoint = .init(host: "127.0.0.1", port: 2550)

}

let sea2Node = await ClusterSystem("sea 2") {
$0.endpoint = .init(host: “127.0.0.2", port: 2551)
}

let 1slandlA
let 1sland2A

Island(actorSystem: sealNode)
Island(actorSystem: sea2Node)

sealNode.cluster.join(node: sea2Node.cluster.node)

import DistributedCluster

let sealNode = await ClusterSystem("sea_1") {
$0.endpoint = .init(host: "127.0.0.1", port: 2550)

}

let sea2Node = await ClusterSystem("sea 2") {
$0.endpoint = .init(host: “127.0.0.2", port: 2551)
}

let 1slandlA
let 1sland2A

Island(actorSystem: sealNode)
Island(actorSystem: sea2Node)

sealNode.cluster.join(node: sea2Node.cluster.node)

import ServiceDiscovery
import K8sServiceDiscovery
import DistributedCluster

ClusterSystem("Compile") { settings in
let discovery = K8sServiceDiscovery()
let target = K8sObject
labelSelector: ["name": "actor-cluster"],
namespace: '"actor-cluster”

)

settings.discovery = ServiceDiscoverySettings(
discovery,
service: target

import DistributedCluster
let daemon = await ClusterSystem.startClusterDaemon()

let sealNode = await ClusterSystem('sea 1") {
$0.endpoint = .init(host: "127.0.0.1", port: 2550)
$0.d1scovery = .clusterd

h

let sea2Node = await ClusterSystem('"sea 2") {
$0.endpoint = .init(host: “127.0.0.2", port: 2551)
$0.d1scovery = .clusterd

h

let 1slandlA
let 1sland2A

Island(actorSystem: sealNode)
Island(actorSystem: sea2Node)

=7
That's it&

Now back to game

Tic Tac Fish &

Tic Tac Fish @x Tic Tac Fish @x

Playing online Playing online

The distributed actor TicTacToe game!
Ready! My Player Opponent

Fish Mouse
D1
X4
.9:0
T¢: Fish won

Name: Fish
Select Team:

2x9) Rodents (&2 &

Play with all your friends

(Peer to peer network)
You win!

import Distributed ,
import DistributedCluster ' es D

< Back

distributed public actor GamelLobby <{ ‘ Tic Tac Fish @

Playing online

public typealias ActorSystem = ClusterSystem

}il Ta iV
eaqy!

a1

X4

[] | 20 Mouse (0)

In progress sessions

var gameSessions: Set<GameSession>
Completed sessions = Fish won

var completedSessions: [GameState] = []
Players waiting for a game session

var waitingPlayers: Set<NetworkPlayer> = []
Ready to play players

var readyPlayers: Set<NetworkPlayer> = []

A new player joined the lobby and we should find an opponent for it
distributed func join(player: NetworkPlayer) { /* ... *x/ }

distributed func setReady(player: NetworkPlayer) async throws

distributed func disconnect(player: NetworkPlayer) { /% ...

As a session completes, remove it from the active game sessions
distributed func sessionCompleted(_session: GameSession) async throws { /* ... %/ }

\V/l=Xfalalaal=Vdlale B laTlalla

< Back
Tic Tac Fish @x

Playing online

Ready!

a1

A
20 Mouse (0)

¢: Fish won

let lobby = GameLobby(actorSystem: actorSystem)

o4

?2?77@7?77?

A _cluster singleton is a conceptual distributed actor that is guaranteed to
have at-most one

instance within the cluster system among all of its = Cluster/
MemberStatus/up members.

public protocol ClusterSingleton: Codable, DistributedActor
where ActorSystem == ClusterSystem {}

let system = await ClusterSystem("main") {
$0.endpoint = .init(host: "127.0.0.1", port: 2550)
$0.plugins.install(
plugin: ClusterSingletonPlugin()
)

import Distributed
import DistributedCluster

distributed public actor GamelLobby: ClusterSingleton 1

public typealias ActorSystem = ClusterSystem
In progress sessions

var gameSessions: Set<GameSession>
Completed sessions

var completedSessions: [GameState] = []
Players waiting for a game session

var waitingPlayers: Set<NetworkPlayer> = []
Ready to play players

var readyPlayers: Set<NetworkPlayer> = []

[]

A new player joined the lobby and we should find an opponent for it

distributed func join(player: NetworkPlayer) { /* ... *x/ }
distributed func setReady(player: NetworkPlayer) async throws { /*x ... %/ }
distributed func disconnect(player: NetworkPlayer) { /* ... %/ }

As a session completes, remove it from the active game sessions
distributed func sessionCompleted(_session: GameSession) async throws { /*x ... %/ }

\V/l=Xfalalaal=Vdlale B laTlalla

let lobby = try await self.actorSystem
. S1ng leton
.host(name: “matchmaking_Tlobby")
{ actorSystem in
GameLobby(actorSystem: actorSystem)
}

=7
That's it&

Keeps track of an active game between two players.
distributed public actor GameSession {

Tic Tac Fish &«

Playing online

public typealias ActorSystem = ClusterSystem

My Player Opponent
Fish Mouse

enum Error: Swift.Error {
case 1llegalMove
}

var sessionId: String A
self.gameState.sessionld
}

let lobby: GameLobby
let playerOne: NetworkPlayer
let playerTwo: NetworkPlayer

09

e

You win!

var gameState: GameState

distributed public func playerMoved(player: NetworkPlayer,
throws { /*x ... %/ }
}

P island_3
. pirates

Island 1 Island 2
stone food

Y
» Rock added

=

7
4 R
L 1

4
" Rock mad

=

L

!
\

’ Rock added

4

’ Rock mad
4

=

=

Postgresdq|

\Vi[e]g[ee]B]="

Event sourcing

Cluster Event Sourcing

Cluster system plugin

. package (
url: "https://github.com/akbashev/cluster-event-sourcing.git",
branch: "main"

))

import EventSourcing

let system = await ClusterSystem("main") A
$0.endpoint = .init(host: "127.0.0.1", port: 2550)
$0.plugins.install(
plugin: ClusterJournalPlugin {
in DebugStore()
}

import EventSourcing

Keeps track of an active game between two players.
distributed public actor GameSession: EventSourced {

distributed public var persistencelID: PersistenceID { self.sessionId }
public enum Event: Codable, Sendable {

case moveMade (GameMove)
¥

public func handleEvent(_ event: Event) {
switch event {
case .moveMade(let move):

do {
try self.gameState.mark(move)
self.gameState.result = .1in1it(
result: self.gameState.checkWin()
)
} catch {

Llog("\(move)", "Incorrect move!")

}

distributed public func playerMoved(_ player: NetworkPlayer, move: GameMove) async throws {
let playerInfo = try await player.getInfo()
guard playerInfo.playerld == self.gameState.currentPlayerId else {
log("\(player)", "Opponent made illegal move! \(move)")
throw Error.1llegalMove

First emit the event
try await self.emit(event: .moveMade(move))
Then continue additional the logic

=7
That's it&

How to handle clients?

public distributed actor NetworkPlayer { e (D

Tic Tac Fish @

public typealias ActorSystem = ClusterSystem
.Let l n f 0: P -La ye - The distributed actor TicTacToe game!
var lobby: GameLobby?

var session: GameSession?

// Communication with Llobby Name: Fish
distributed public func joinLobby(_lobby: GameLobby) &
distributed public func setUserReady() async throws {
distributed public func leavelLobby() async throws { /:
distributed public func playerChangedStatus(_ status: P

Select Team:

Fish (B« X £)) Rodents (-3 L0 4.

// SeS S lOn Updates Play with all your friends
distributed public func makeMove(_ move: GameMove) asyn reertopeernetord
distributed public func sessionStarted(_ session: GameS

X ... X/ }
distributed public func sessionFinished(_session: Game
X ... %/ }

distributed public func opponentMoved(_move: GameMove)

Stateless clients

GET/POST

GET/POST

—— Message streaming

aees
a|aoee
|aee
::.: 4. ---
aee

Message streaming

e Websockets

 JSON streaming, SSE via HTTP

Swift OpenAPI Generator

openapi: 3.1.0
info:
title: TicTacToe API
version: 1.0.0
servers:

— url: 'http://localhost:8080"
paths:
/matchmaking:
post:

operationId: connectToLobby
summary: Subscribe to lobby updates
parameters:
— 1n: header
name: player_id
schema:
type: string
format: uuid
required: true
— 1n: header
name: player_name
schema:
type: string
required: true
— 1n: header
name: player_team
schema:
type: string
required: true
requestBody:
required: true
content:
application/jsonl:
schema:
$ref: '#/components/schemas/PlayerLobbyMessage’
responses:
1200 :
description: A stream of Llobby updates
content:
application/jsonl:
schema:
$ref: '#/components/schemas/LobbyMessage’

openapi: 3.1.0

info:
title: TicTacToe API
version: 1.0.0

servers:
— url: 'http://localhost:8080"
paths:
/matchmaking:
post:

operationId: connectToLobby
summary: Subscribe to lobby updates
parameters:
— 1n: header
name: player_id
schema:
type: string
format: uuid
required: true
— 1n: header
name: player_name
schema:
type: string
required: true
— 1n: header
name: player_team
schema:
type: string
required: true
requestBody:
required: true
content:
application/jsonl:
schema:
$ref: '#/components/schemas/PlayerLobbyMessage’
responses:
'200" :
description: A stream of Llobby updates
content:
application/jsonl:
schema:
$ref: '#/components/schemas/LobbyMessage’

responses:

‘200" :
description: A stream of lobby updates
content:
application/jsonl:

schema:
$ref: '#/components/schemas/LobbyMessage'’

struct Api: APIProtocol {

func connectToLobby(input: Operations.ConnectToLobby.Input) async throws —>
Operations.ConnectToLobby.Output {

let (outputStream, outputContinuation) = AsyncStream<LobbyMessage>.makeStream()
let stream = switch input {
case .applicationJsonl(let body):

body.asDecodedJSONLines (

of: PlayerLobbyMessage.self
)

}

let responseBody: Operations.ConnectToLobby.Output.Ok.Body = .applicationJsonl(
.init(outputStream.asEncodedJSONLines(), length: .unknown, iterationBehavior: .si
)

return .ok(.init(body: responseBody))

| ‘___ rmrvantar '+l Py S N o~ o ag .
- Parameter 10 or tvpe Asvncotream<inp ' 1n Aictrikhi it
.\ .\ ol " —_at-l ‘ |_1--._-—_’7-f;~"_..-‘| Lcalllss ’ ||I :l.;-;_hf.f_".’f--:' H _I"_IV :» 'h:— 1t |‘l' U '— .':v"—'i‘ ‘H -’jl '— "ii a :jl | '—J ‘| 7| etnoq aoes Not contorir D SE€ |
jted Instance metnoa aoes not contorm 1o seria h_l\

There can never be too few
actors

import Types

import Distributed

import DistributedCluster
import OpenAPIRuntime

distributed public actor ServerStream<Input, Output>
where Input: Codable & Sendable,
Output: Codable & Sendable {

public typealias ActorSystem = ClusterSystem

var handler: (any ServerStreamHandler)?

var lastMessageDate: ContinuousClock.Instant
var messagelListener: Task<Void, any Error>?
var heartbeatListener: Task<Void, any Error>?

let output: AsyncStream<QOutput>.Continuation
let heartbeatSequence: AsyncTimerSequence<ContinuousClock>
let heartbeatInterval: Duration

extension NetworkPlayer: ServerStreamHandler {

var LobbyConnection: ServerStream<PlayerLobbyMessage, LobbyMessage>?
var gameSessionConnection: ServerStream<PlayerSessionMessage, SessionMessage>?

private func sendMessage(_ message: LobbyMessage) A1
I

try await self.lobbyConnection?.sendMessage(message)
I3

}

private func sendMessage(_ message: SessionMessage) A
Task {

try await self.gameSessionConnection?.sendMessage(message)
}

}

distributed public func handle<Input, Output>(
__1nput: Input,
from connection: ServerStream<Input, Output>
) async throws <

}

There Is still one Issue we need
to solve

let networkPlayer: NetworkPlayer = NetworkPlayer(
actorSystem: self.actorSystem,
info: playerInfo

let networkPlayer: NetworkPlayer = NetworkPlayer(
actorSystem: self.actorSystem,
info: playerInfo

Actor Identity

/// Uniquely identifies a DistributedActor within the cluster.

///

/// It is assigned by the ClusterSystem at initialization time of a distributed actor,

/// and remains associated with that concrete actor until it terminates.

///

//] ## ldentity

/// The id is the source of truth with regards to referring to a _specific_ actor in the
system.

/// |dentities can be treated as globally (or at least cluster-wide) unique identifiers of
actors.

|.o.t.1blic struct ActorlD: @unchecked Sendable {

) 3

) 2
) 2
) 2

4

i

cf433927%H6bd2-4ee5-83e2-9c

24

24
24

[
db16cchb-3034-4f07-9b1 F47039b924c8b !

24
24
~ 24

S . | ’

\\ ,”

al3aabde1-6604-49d0-94c¢8-91171f26a4a20

aaeaac31-03bf-4367-8845-1b15d4f476aa

8af9agden1 PN-46a9-98¢3-af0074792bch
| ‘ Se

- g ‘ 0
\

) 2
) 2
) 2

4

4

cf433927%H6bd2-4ee5-83e2-9c

24

24
24

[
db16cchb-3034-4f07-9b1 F47039b924c8b !

24
24
~ 24

pRN . | 4

\\ gw

al3aabde1-6604-49d0-94c¢8-91171f26a4a20

aaeaac31-03bf-4367-8845-1b15d4f476aa

?2?77@7?77?

llllw“\ i & = &= = = = S = = - - S - SN N N N NN NN NN BN N BN N BN BN BN N B
y

distributed public actor GamelLobby: ClusterSingleton, LifecycleWatch {

private var players: Set<NetworkPlayer> = []
private var listeningTask: Task<Void, Error>?

public func terminated(actor id: ActorID) async {
for player in self.players where player.id == id {
self.players.remove(player)

s
5
private func findPlayer() {
guard self.listeningTask == nil else {
self.actorSystem. log.info("Already looking for nodes")
return
5
self.listeningTask = Task {
for await player in await self.actorSystem.receptionist.listing(of: NetworkPlayer.receptionistKey) {
self.players.insert(player)
self.watchTermination(of: player)
5
s
s

}

extension NetworkPlayer {
static var receptionistKey: DistributedReception.Key<NetworkPlayer> { "player receptionist key" }

public init(
actorSystem: ClusterSystem
) async {
self.actorSystem = actorSystem
awalit actorSystem
. receptionist
.checkIn(self, with: Self.receptionistKey)

I
I

[
[
[
|
[
[
[
[
|
I q
7

’

[
[
[
[
q
[

Y &

Voa®

b\

2

i
i
i
i
i
R i
i
i
i
i
i
i
i
i
i
i
i
i
i

?2?77@7?77?

HERE ON NODE 2!!!

Virtual Actors

Cluster system plugin

. package (
url: “https://github.com/akbashev/cluster-virtual-actors.git”,
branch: "main"

))

import VirtualActors

let system = await ClusterSystem("main") {
$0.endpoint = .init(host: "127.0.0.1", port: 2550)
$0.plugins.install(
plugin: ClusterVirtualActorsPlugin()
)

extension NetworkPlayer: VirtualActor {
public static func spawn(
on system: DistributedCluster.ClusterSystem,
dependency: any Sendable & Codable
) async throws —> NetworkPlayer {
A bit of boilerplate to check type until (associated type error) [https://
github.com/swiftlang/swift/1ssues/74769] is fixed
guard let player = dependency as? Player else { throw
VirtualActorError.spawnDependencyTypeMismatch }
return NetworkPlayer(actorSystem: system, player: player)
}

let (system, node) = await ClusterSystem.startVirtualNode(named: "players—\
(endpoint.description)") A
$0.endpoint = endpoint
$0.d1scovery = .clusterd

let networkPlayer: NetworkPlayer = try await self.actorSystem.virtualActors.getActor
identifiedBy: .init(rawValue: player.playerld),
dependency: player

let networkPlayer: NetworkPlayer = try await self.actorSystem.virtualActors.getActor
identifiedBy: .init(rawValue: player.playerld),
dependency: player

=7
That's it&

T
h
a
.t
S
Iit, r
e
a
|
Iy{f

Bullding reliable and scalable
apps with Distriouted Actors

Cluster System

Players
R 4
4

Frontend

»* . Distributed actors

A A
VI A
N H

(Game Session
swift-nio ¥..

%
e
s
s
Je
e
s
s
s
%
A

Distributed actors

L 4

e
'S

Cluster System Cluster System

Players Players Pla
SRR IEEE SR :
R 4 .
Frontend R e e
" Distributed actors Distributed actors Distribuf

.

A o A
VR
N H

Game Session Players Pla

0'..... \
"OR A\ \
®:---@

Distributed actors Distributed actors Distribui

SWift-niO V.,

e
%

Cluster System Cluster System

Players Pla
N
------- \

Frontend e > .
................................. Distribut
& ,
Game Session Players Pla

SWift-niO V.,.

OOO.... \
"OR A\ \
®:---@

Distributed actors Distributed actors Distribui

7

e Vertically Scalable

e Horizontally Scalable

e [Fault Tolerant.

e Consistency Guarantees.

e Availabale.

e GameSession + ClusterSingleton
e GamelLobby + Event Sourcing

o NetworkPlayer + Virtual Actors

® Move ClusterSystem to Swift 6 strict concurrency

e Finalize Event Sourcing library and provide basic stores (Postgresql and
Mongodb)

e Finalize Virtual Actors—watching actor’s lifecycle in runtime, provide
shapshots and simple state storing.

“First make it work, then make it beautiful”

Joe Armstrong

Cluster System

Players
N
4

Frontend

»* . Distributed actors

L 3
A" o* A
* -
[|
[|

SwiftUI

.

v
(Game Session

%
e
s
s
Je
e
s
s
s
%
A

Distributed actors

swift-nio V...

'S

Cluster System

Players
SwiftUI
PN
Frontend R 2
" . Distributed actors

.
o* o*

L 3
A A
* -
[|
[|

.

v
(Game Session

%
e
s
s
Je
e
s
s
s
%
A

Distributed actors

Other declarative Uls:

TokamaUl swift-nio \
Compose

e
'S

Thank you

M https://mastodon.social/@akbashev

“ https://bsky.app/profile/jaleel.bsky.social

https://www.linkedin.com/in/jaleelakbashev/

https://mastodon.social/@akbashev
https://bsky.app/profile/jaleel.bsky.social
https://www.linkedin.com/in/jaleelakbashev/

Swift Open Source Slack

