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The Data Challenge in Particle Physics

➜ The Large Hadron Collider (LHC)
generates petabytes of data annually
from billions of collision events.

➜ Each event records the properties of
numerous particles, creating complex,
high-dimensional datasets.

➜ To interpret these events, we rely heavily
on Monte Carlo (MC) simulations
to compare with theoretical models.

➜ The scale of both real and simulated data
presents a major challenge for
efficient processing and analysis.

[CERN]
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HPC and Data Workflow Challenges

➜ Traditional histogramming workflows process data
after event generation, often in Python.

➜ For large datasets, this approach hits limits
in memory usage and I/O bandwidth.

➜ We need fast, in-loop analysis tools that
summarise statistics during event processing.

➜ Solution: updatable summary statistics directly
in C++ to handle massive bulk samples efficiently.
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Enter YODA

➜ Yet more Objects for Data Analysis!
[yoda.hepforge.org]

➜ Designed for memory efficiency and speed
in high-performance environments.

➜ First released in 2013, second major version
available as of 2023. [gitlab.com/hepcedar/yoda]

➜ Written in C++ and programmatically usable
from C++ and Python, complemented by a
set of command-line tools for dataset inspection,
manipulation and combination.

➜ Emerged from the sub-field of MC event generator analysis in particle physics,
but library is deliberately agnostic of any particular application

[arXiv:2312.15070]
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Design principles I

➜ Accurate Distribution Estimation

➜ Histograms represent best-estimate distributions, not just simple fill counts.

➜ Non-uniform binning is essential for optimal data estimation in complex datasets.

➜ Live, Updatable Data Objects

➜ Histograms must support continuous updates as events are processed.

➜ Unlike tools like NumPy or Excel, HEP workflows often can’t load all data into memory at once.

➜ Weighted Statistics for Precision

➜ Bins track weighted statistical moments for key data summaries.

➜ Unbinned quantities can be tracked alongside binned data
to capture more detailed trends for analysis.

➜ Consistent Projections Across Dimensions

➜ Maintain integral consistency when reducing higher-dimensional histograms to lower dimensions.

➜ Ensure unbiased trend analysis by exact marginalisation of multidimensional data.
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Design principles II

➜ Style Independence

➜ Statistical data remains consistent, regardless of changes to plotting style or presentation.

➜ Decoupling Binning and Bin Content

➜ Supports both live objects for ongoing data updates and inert representations
for finalised data summaries (values and uncertainties).

➜ User-Friendly Interface

➜ Clean API designed for data scientists, focusing on familiar statistical and data-analytic concepts.

➜ Internal complexity is abstracted away to maintain statistical consistency and type safety.

➜ Focused on binned statistical analysis, with zero external dependencies
for seamless embedding in core C++ applications.
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Flexible Bin Partitioning for Modern Analysis Needs

➜ New flexible Axis class supports both continuous and discrete data types.

➜ Template-based design adapts to different edge types automatically.

➜ Continuous Axis (classic mode)

➜ Triggered by floating-point types
using standard type traits.

➜ Binning defined by N + 1 edges for N bins,
plus under-/overflow bins.

➜ Bin widths handle infinite ranges where needed.

−∞ +∞

−1.0 −0.5 0.0 0.5 1.0

➜ Discrete Axis (new mode)

➜ Designed for non-continuous types (e.g. integers, categories).

➜ Bins defined by N edges and a special “otherflow” bin for outliers.

➜ Ideal for multiplicities, cutflows, and categorical data handling.

A B C

➜ Advanced Binning Features

➜ Seamlessly translates between local bin indices and global index positions.

➜ Supports slicing and marginalisation across multi-dimensional spaces.
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Flexible Bin Content Types for Advanced Data Handling

➜ Live Content (Dbn Class)

➜ Generalised multi-dimensional version of
YODA1’s distribution class.

➜ Tracks exact first- and second-order statistical moments,
including mixed moments.

➜ Flexible fill() method: accepts coordinates,
weights, and fill fractions for dynamic updates.

x

dσ/dx

➜ Inert Content (Estimate Class)

➜ Central value representation, optionally
with detailed error breakdowns.

➜ Encodes uncertainties as labeled {down, up}
variations to capture dependence on theoretical
or experimental parameters.

➜ Supports both correlated and uncorrelated
treatments of errors.

➜ Arithmetic operations respect these uncertainty
relationships for robust statistical handling.

➜

x

dσ/dx

Central value
Statistical uncertainty
Systematic uncertainty
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Flexible Bin Management with BinnedStorage

➜ Bin wrapper class

➜ Links bin content to both local
and global bin properties.

➜ Provides dimension-aware methods
for volume calculations:
dVol() for general volume, plus
dLen(), dArea() aliases for 1D and 2D.

➜ Templated accessors retrieve axis-specific
properties seamlessly.

➜ CRTP ensures intuitive method names
for first 3 dimensions.

➜ BinnedStorage class

➜ Holds arbitrary data types, enabling versatile content management.

➜ Flexible bin lookups: Index-based (bin(i)) and coordinate-based (binAt(x)) retrieval.

➜ Supports bin masking to emulate data “gaps” without requiring bin erasure:
Mask bins by index (mask(i)) or coordinates (maskAt(x)).

BinnedStorage

Bin<ContentType>Bin<ContentType>Bin<ContentType>Bin<ContentType>Bin<ContentType>Bin<ContentType> Binning

.bins()

.numBins()

.mergeBins()

references
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FillableStorage: Managing Dynamic Bin Content

BinnedStorage

FillableStorage

DbnStorage

BinnedDbn

BinnedHisto

BinnedProfile

EstimateStorage

BinnedEstimate

binning backend

introduces fill adapter

content specialisation,
inherits from AnalysisObject

dimensional specialisation

➜ Inherits from BinnedStorage, adding support for dynamic updates in “live” bin content.

➜ Introduces a fill adapter to manage bin-content updates for each fill operation.

➜ Ensures consistent handling of complex binning scenarios and statistical tracking.

➜ Fill function returns bin position as a global index or -1 for invalid (NaN) coordinates.
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Type and Dimensionality Reductions for Flexible Data Handling

➜ Live to Inert Transformations

➜ Live BinnedDbn objects reduce to
inert BinnedEstimate objects.

➜ 0-Dimensional Case: Counter (live)
reduces to Estimate0D (inert).

➜ Easily slice higher-dimensional data
into lower-dimensional subsets
along any axis.

➜ Scatter Objects for Visualisation

➜ Both live and inert types reduce to
Scatter objects for plotting and
presentation.

AnalysisObject

Counter BinnedDbn

Estimate0D BinnedEstimate

ScatterND

➜ Unified Metadata and Transformation Support

➜ All user-facing types inherit from the AnalysisObject base class,
enabling attribute storage for metadata.

➜ Global scaling operations and arbitrary transformations (e.g. lambda functions)
apply seamlessly to inert types like Estimates and Scatters.
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HPC Support for Distributed and Parallel Workflows

➜ Efficient Serialisation for MPI Communication:
➜ AnalysisObject base class can be (de-)serialised into/from a std::vector<double>.

➜ Facilitates easy communication of data across nodes in distributed environments like MPI.

➜ On-the-Fly Stacking & Merging
➜ Serialised data enables efficient

stacking and merging of
histograms during computation.

➜ Supports parallel workflows
where intermediate results can
be combined dynamically
across multiple processes.

vector<double>vector<double>vector<double>vector<double>vector<double>vector<double> vector<double>
MPI reduce

➜ Optimised for Scalability
➜ Built to handle large datasets with minimal memory overhead,

making it well-suited for HPC applications.

➜ Seamless integration with parallel computing frameworks ensures scalability
for big data analysis in particle physics.

➜ Applications in Machine Learning: Serialised data can be easily integrated into machine learning
pipelines for model training, feature extraction, and data preprocessing.
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Flexible I/O Formats for Analysis and HPC Applications
BEGIN YODA_HISTO1D_V3 /H1D_d
Path: /H1D_d
Title:
Type: Histo1D
---
# Mean: 3.470588e-01
# Integral: 1.700000e+01
Edges(A1): [0.000000e+00, 5.000000e-01, 1.000000e+00]
# sumW sumW2 sumW(A1) sumW2(A1) numEntries
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
1.000000e+01 1.000000e+02 1.000000e+00 1.000000e-01 1.000000e+00
7.000000e+00 4.900000e+01 4.900000e+00 3.430000e+00 1.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
END YODA_HISTO1D_V3

BEGIN YODA_BINNEDHISTO <S>_V3 /H1D_s
Path: /H1D_s
Title:
Type: BinnedHisto <s>
---
# Mean: 3.750000e-01
# Integral: 8.000000e+00
Edges(A1): ["A"]
# sumW sumW2 sumW(A1) sumW2(A1) numEntries
5.000000e+00 2.500000e+01 0.000000e+00 0.000000e+00 1.000000e+00
3.000000e+00 9.000000e+00 3.000000e+00 3.000000e+00 1.000000e+00
END YODA_BINNEDHISTO <S>_V3

➜ Generalised ASCII Output

➜ Extended to support arbitrary dimensions and string-based edges for greater flexibility.

➜ Backward compatibility: YODA2 reader supports legacy YODA1 ASCII formats.

➜ HDF5 Output for High-Performance Computing

➜ Ideal for HPC workflows requiring high-throughput processing and scalable data management.

➜ Uses the lightweight HighFive library for streamlined C++ integration.
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Python API & Plotting for Seamless Integration

➜ Python Bindings via Cython

➜ YODA provides Python bindings for scripting and
integration into Python-based workflows.

➜ Enables efficient use of YODA objects and
operations from within Python scripts.

➜ Customisable matplotlib-based Plotting

➜ Automatically generates Python scripts that
produce plots with matplotlib.

➜ Self-contained plots: Once the script is generated,
no YODA installation is required to produce the plot.
Ideal for sharing results with collaborators.

➜ Full control over plot aesthetics, allowing for customisation
without altering the underlying data structures.

➜ Share Python-generated plotting scripts with collaborators,
ensuring consistency in results and reproducibility.
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Summary & Key Takeaways

➜ Efficient, Scalable Data Handling

➜ YODA2 supports live and inert statistical objects
with flexible bin partitioning and content storage.

➜ Optimised for large-scale datasets and
HPC environments through serialisation
and parallel computation.

➜ User-Centric Design

➜ Clean and intuitive APIs in both C++ and Python.

➜ Self-consistent, customisable plotting with minimal dependencies for easier collaboration.

➜ Versatility & Extensibility

➜ Seamless integration into modern workflows, including machine learning and distributed computing.

➜ Backward compatibility with YODA1 and support for both ASCII and HDF5 formats.

➜ Empowering Particle Physics and Beyond

➜ From particle collision data to broader applications in data science and machine learning,
YODA2 is designed for robust, efficient analysis at scale.

[yoda.hepforge.org]

[gitlab.com/hepcedar/yoda]

[packages.spack.io:yoda]

[arXiv:2312.15070]
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Backup
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Summary statistics

Analytic first- and second-order statistical moments for probably density function f (x) ≡ dP/dx

⟨x⟩ ≡
∫

x∈X
xf (x) dx

⟨x2⟩ ≡
∫

x∈X
x2f (x) dx

σ2(x) ≡ ⟨x2⟩ − ⟨x⟩2
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Unweighted moments

Unweighted mean and variance for finite-size sample with 1 ≤ n ≤ N:

⟨x̂⟩U ≡
∑N

n=1 xn

N

σ2
U(x̂) ≡

∑N
n=1(xn − ⟨x⟩)2

N − 1

= ⟨x2⟩U − ⟨x⟩2
U

=

∑N
n=1 x2

n

N − 1
−

(∑N
n=1 xn

)2

(N − 1)2
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Weighted moments

Weighted mean and variance:

⟨x⟩ =
∑

n wnxn∑
n wn

σ2(x) = B ·
∑

n wn
(
xn −

∑
m wmxm

)2(∑
n wn

) =

(∑
n wnx2

n
)
· (
∑

n wn)−
(∑

n wnxn
)2(∑

n wn
)2 −

∑
n w2

n

with weighted Bessel factor:

B =
Neff

Neff − 1
=

(
∑

n wn)2

(
∑

n wn)2 −
∑

n w2
n

for effective fill count:

Neff =
(
∑

n wn)2∑
n w2

n
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Counts and efficiencies

Closely related quantities are Poisson mean and variance:

⟨x̂⟩P ≡ N

σ2
P(x̂) ≡ N

Classic Monte Carlo scaling then given by

σP(x̂)
⟨x̂⟩P

=

√
N

N
=

1
√

N

Sample efficiency for selected events Nsel from a known number of total events N is

ϵ̂ ≡
Nsel

N

Binomial statistics gives an estimator for the uncertainty on the efficiency

σ̂2(ϵ̂)B =
ϵ̂(1 − ϵ̂)

N
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Connection to differential calculus

➜ statistical histogram: a discrete approximation to entire probability density function
f (Ω) = dP/dΩ or population density dN/dΩ, not just a collection of fill counts

➜ bin measure dΩ (or ∆Ω) representing the volume element of the bin
crucial for differential consistency

➜ ∆N/∆Ω = [N(Ω +∆Ω)− N(Ω)] /∆Ω
∆Ω→0
= dN/dΩ necessitates division by bin width

➜ generally not desirable for finite bins to have the same width

➜ using non-uniform bin sizes ensures statistical relative uncertainty on bin populations
is equally distributed across histogram

➜ failing to divide by the bin measure distorts the distribution away from its physical shape

➜ actual bin populations are better computed using a discrete binning expressed
in terms of finite probabilities rather than densities

➜ awkward workaround: multiply each density by the fill volume

➜ prefer to refer to this not as a histogram but a bar chart, reflecting its typical use
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Lessons from YODA1: Motivation for YODA2

➜ Initial goals established at YODA1’s release in 2013, but structural limitations
highlighted the need for a complete redesign.

➜ Limited support for multi-dimensional data objects and only continuous-valued axes.

➜ Inability to store arbitrary data types in binnings restricted flexibility.

➜ Correct but rigid overflow bin treatment lacked flexibility for complex analyses.

➜ No unified scheme for local and global bin indexing across multiple dimensions,
complicating data management.

➜ Redundant internal implementations to support both C++ and Python APIs for various
dimensionalities and content types.

➜ Difficulty integrating “inert” scatter data types (e.g. measured data from an experiment)
with “live” binned objects generated during MC runs.

➜ Limited, cumbersome support for representing and managing uncertainty breakdowns
and correlations in scatter data types.
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Histograms

➜ generalise measured variable x to vector variable-space Ω

➜ composed of vectors ω with differential volume elements dΩ

➜ partition Ω into disjoint (sub)set of bins {Ωb} ⊂ Ω

➜ moments in each bin b converge to summary properties of that bin’s variable-space partition

⟨ω(i)⟩b ≡
∫
ω∈Ωb

ω(i)f (ω) dΩ

⟨ω(i)ω(j)⟩b ≡
∫
ω∈Ωb

ω(i)ω(j)f (ω) dΩ

➜ need to recover unbinned values when expanding the partition to whole space

➜ need to recover differential properties of the pdf itself as Ωb → dΩ(ω)

➜ merging bins must converge to the same result as having originally constructed
a lower-dimensional or less finely binned partition of space
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Profiles

➜ useful class of histogram mixing binned and unbinned variable subspaces

➜ allow characterisation of the unbinned dimensions Υ via their moments as
projected into each partition of the bin-space Θ

➜ allow statistical aggregation of finite samples into “independent variable” bins θ ∈ Θb ,
while characterising the mean dependence of the unbinned dependent variables y on θ

➜ linearity of statistical moments again ensures consistency when merging bins

➜ unbinned space Υ can in general be multidimensional but canonical bin value then
ambiguous

➜ definiteness retained for single-dimensional unbinned space with moments ⟨y⟩ and ⟨y2⟩

➜ profile canonical bin value is the mean ⟨y(Θ)⟩ as a function of binned coordinates

➜ nominal uncertainty given by standard error σ̂ȳ (θ) = σ̂b/
√

Nb
for effective sample count Nb in bin b ⊂ θ
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Example: construction and filling

// declaration examples
Histo1D h1; // histogram with 1 continuous axis
Profile2D p1; // profile with 2 continuously binned axes + 1 unbinned axis
HistoND <5> h2; // histogram with 5 continuous axes

// constructor examples
Histo1D h3(10, 0, 100); // 10 bins between 0 and 100
const std::vector <double > edges = {0, 10, 20, 30, 40, 50};
Histo1D h4(edges);
BinnedHisto <int , std::string > h5({ 1, 2, 3 }, { "A", "B", "C" });

// fill examples
Histo1D h6(5, 0.0, 1.0);
h6.fill (0.2);
Profile1D p2(5, 0.0, 1.0);
p2.fill (0.2, 3.5);

// marginalisation examples
Histo2D h7 = p1.mkHisto (); //< marginalise over unbinned axis
Histo1D h8 = h7.mkMarginalHisto <1 >(); //< marginalise over secomd binned axis
Histo1D h9 = p1.mkMarginalProfile <0>(); //< marginalise over first binned axis
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Example: looping and indexing

size_t nbinsX = 4, nbinsY = 6;
double lowerX = 0, lowerY = 0;
double upperX = 4, upperY = 6;
Histo2D h2(nbinsX , lowerX , upperX ,

nbinsY , lowerY , upperY );

// loop over bins and fill with increasing weight
double w = 0;
for (auto& b : h2.bins ()) { //< iterators passes through using templated bin wrappers

h2.fill(b.xMid(), b.yMid(), ++w);
}

for (size_t idxY = 0; idxY < h2.numBinsY(true); ++idxY) { //< true includes overflows
for (size_t idxX = 0; idxX < h2.numBinsX(true); ++idxX) { //< true includes overflows

std::cout << "\t(" << idxX << "," << idxY << ")\t=\t";
std::cout << h2.bin(idxX , idxY).sumW ();

}
std::cout << std::endl;

}
std::cout << std::endl;

# H2 bins using local indices + under/overflows:
# (0,0) = 0 (1,0) = 0 (2,0) = 0 (3,0) = 0 (4,0) = 0 (5,0) = 0
# (0,1) = 0 (1,1) = 1 (2,1) = 2 (3,1) = 3 (4,1) = 4 (5,1) = 0
# (0,2) = 0 (1,2) = 5 (2,2) = 6 (3,2) = 7 (4,2) = 8 (5,2) = 0
# (0,3) = 0 (1,3) = 9 (2,3) = 10 (3,3) = 11 (4,3) = 12 (5,3) = 0
# (0,4) = 0 (1,4) = 13 (2,4) = 14 (3,4) = 15 (4,4) = 16 (5,4) = 0
# (0,5) = 0 (1,5) = 17 (2,5) = 18 (3,5) = 19 (4,5) = 20 (5,5) = 0
# (0,6) = 0 (1,6) = 21 (2,6) = 22 (3,6) = 23 (4,6) = 24 (5,6) = 0
# (0,7) = 0 (1,7) = 0 (2,7) = 0 (3,7) = 0 (4,7) = 0 (5,7) = 0
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Variadic templates and parameter packs
➜ Metaprogramming using C++17 takes care of generalisation to arbitrary dimensions:

#include <iostream >
#include <string >
#include <tuple >
#include <vector >

template <typename ... Args >
class MyHisto {
public:

MyHisto(const std::vector <Args >& ... edges)
: _axes(edges ...) { }

size_t dim() const { return sizeof ...( Args); }

template <size_t I>
void printBinning () const {

if constexpr (I < sizeof ...( Args)) {
std::cout << "Axis" << (I+1) << "has";
std::cout << std::get <I>(_axes).size ();
std::cout << "bins." << std::endl;
printBinning <I+1>();

}
}

void print() const {
std::cout << dim() << "D:" << std::endl;
printBinning <0 >();

}

private:
std::tuple <std::vector <Args >...> _axes;

};

const std::vector <double > dedges {1.0, 2.0, 3.0};
const std::vector <std::string > sedges{"A", "B", "C"};
MyHisto h(dedges , sedges );
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