Efficient Histogramming for High-Performance
Computing in C++ with YODA

Christian Giitschow
FOSDEM 2025, Brussels

02 February 2025

LN |, - SWIFT i

UCL ARC ?/Mcnet

nnnnnnnnnnnnnnnnnnn

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

The Data Challenge in Particle Physics

=% The Large Hadron Collider (LHC)
generates petabytes of data annually
from billions of collision events.

=) Each event records the properties of
numerous particles, creating complex,
high-dimensional datasets.

=y To interpret these events, we rely heavily
on Monte Carlo (MC) simulations .
to compare with theoretical models. [CERN]

3
8
8

ATLAS

=» The scale of both real and simulated data ATLAS
presents a major challenge for 0 g Data taking

Managed Data [PB]

efficient processing and analysis. 600
400

200

2010 2012 2014 2016 2018 2020 2022

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 2/15

https://cds.cern.ch/collection/Photos

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

HPC and Data Workflow Challenges

=y Traditional histogramming workflows process data
after event generation, often in Python.

A ~=~ One-Pass Workflow (NumPy, Excel)
~— In-Loop Workflow (YODA)

= For large datasets, this approach hits limits
in memory usage and I/O bandwidth.

=» We need fast, in-loop analysis tools that
summarise statistics during event processing.

Memory Requirement

Dataset Size

=9 Solution: updatable summary statistics directly
in C++ to handle massive bulk samples efficiently.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 3/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Enter YODA

=» Yet more Objects for Data Analysis!
[yoda.hepforge.org]

=» Designed for memory efficiency and speed
in high-performance environments.

=) First released in 2013, second major version

available as of 2023. [gitlab.com/hepcedar/yoda] Consistent, multidimensional
differential histogramming and
=3 Written in C++ and programmatically usable summary statistics with YODA 2

from C++ and Python’ Complemented by a Andy Buckley, Louie Corpe, Matthew Filipovich, Christian Gutschow, Nick Rozinsky,
set of command-line tools for dataset inspection, simerrer verenen. famie velen [arXiv:2312.15070]
manipulation and combination.

=» Emerged from the sub-field of MC event generator analysis in particle physics,
but library is deliberately agnostic of any particular application

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 4/15

https://yoda.hepforge.org/
https://gitlab.com/hepcedar/yoda
https://arxiv.org/abs/2312.15070

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Design principles |
=) Accurate Distribution Estimation

=9 Histograms represent best-estimate distributions, not just simple fill counts.

=% Non-uniform binning is essential for optimal data estimation in complex datasets.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 5/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Design principles |

=% Accurate Distribution Estimation
=9 Histograms represent best-estimate distributions, not just simple fill counts.

=% Non-uniform binning is essential for optimal data estimation in complex datasets.

=¥ Live, Updatable Data Objects
=) Histograms must support continuous updates as events are processed.

=» Unlike tools like NumPy or Excel, HEP workflows often can’t load all data into memory at once.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 5/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Design principles |

=) Accurate Distribution Estimation

=9 Histograms represent best-estimate distributions, not just simple fill counts.

=% Non-uniform binning is essential for optimal data estimation in complex datasets.
=¥ Live, Updatable Data Objects

=) Histograms must support continuous updates as events are processed.

=» Unlike tools like NumPy or Excel, HEP workflows often can’t load all data into memory at once.

=» Weighted Statistics for Precision
=9 Bins track weighted statistical moments for key data summaries.

=% Unbinned quantities can be tracked alongside binned data
to capture more detailed trends for analysis.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch

5/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Design principles |

=% Accurate Distribution Estimation
=9 Histograms represent best-estimate distributions, not just simple fill counts.

=% Non-uniform binning is essential for optimal data estimation in complex datasets.

=¥ Live, Updatable Data Objects
=) Histograms must support continuous updates as events are processed.

=» Unlike tools like NumPy or Excel, HEP workflows often can’t load all data into memory at once.

=» Weighted Statistics for Precision
=9 Bins track weighted statistical moments for key data summaries.

=% Unbinned quantities can be tracked alongside binned data
to capture more detailed trends for analysis.

=3 Consistent Projections Across Dimensions
=» Maintain integral consistency when reducing higher-dimensional histograms to lower dimensions.

=% Ensure unbiased trend analysis by exact marginalisation of multidimensional data.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 5/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Design principles Il

=) Style Independence
=) Statistical data remains consistent, regardless of changes to plotting style or presentation.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 6/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Design principles Il

=) Style Independence
=) Statistical data remains consistent, regardless of changes to plotting style or presentation.

=» Decoupling Binning and Bin Content

=3 Supports both live objects for ongoing data updates and inert representations
for finalised data summaries (values and uncertainties).

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 6/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Design principles Il

=) Style Independence
=) Statistical data remains consistent, regardless of changes to plotting style or presentation.
=» Decoupling Binning and Bin Content

=3 Supports both live objects for ongoing data updates and inert representations
for finalised data summaries (values and uncertainties).

=» User-Friendly Interface
=) Clean API designed for data scientists, focusing on familiar statistical and data-analytic concepts.

=) Internal complexity is abstracted away to maintain statistical consistency and type safety.

=» Focused on binned statistical analysis, with zero external dependencies
for seamless embedding in core C++ applications.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 6/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Flexible Bin Partitioning for Modern Analysis Needs

=» New flexible Axis class supports both continuous and discrete data types.
=3 Template-based design adapts to different edge types automatically.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 7115

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Flexible Bin Partitioning for Modern Analysis Needs

=» New flexible Axis class supports both continuous and discrete data types.
=3 Template-based design adapts to different edge types automatically.

=3 Continuous Axis (classic mode)
=» Triggered by floating-point types —00 é- -4

using standard type traits.

=» Binning defined by N + 1 edges for N bins,
plus under-/overflow bins.

=) Bin widths handle infinite ranges where needed.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch

---9 +o0

7115

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Flexible Bin Partitioning for Modern Analysis Needs

=» New flexible Axis class supports both continuous and discrete data types.
=3 Template-based design adapts to different edge types automatically.

=3 Continuous Axis (classic mode)

=» Triggered by floating-point types —00 é- -4
using standard type traits.

=» Binning defined by N + 1 edges for N bins,
plus under-/overflow bins.

=) Bin widths handle infinite ranges where needed.

=) Discrete Axis (new mode) ! ;

---9 +o0

=» Designed for non-continuous types (e.g. integers, categories). A 5
=) Bins defined by N edges and a special “otherflow” bin for outliers.

=) lIdeal for multiplicities, cutflows, and categorical data handling.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch

7115

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Flexible Bin Partitioning for Modern Analysis Needs

=» New flexible Axis class supports both continuous and discrete data types.
=3 Template-based design adapts to different edge types automatically.

=3 Continuous Axis (classic mode)

=» Triggered by floating-point types —00 é- -4
using standard type traits.

=» Binning defined by N + 1 edges for N bins,
plus under-/overflow bins.

=) Bin widths handle infinite ranges where needed.

=) Discrete Axis (new mode) ! ;

---9 +o0

=» Designed for non-continuous types (e.g. integers, categories). A 5
=) Bins defined by N edges and a special “otherflow” bin for outliers.
=) lIdeal for multiplicities, cutflows, and categorical data handling.
=9 Advanced Binning Features
=3 Seamlessly translates between local bin indices and global index positions.

=9 Supports slicing and marginalisation across multi-dimensional spaces.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch

7115

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Flexible Bin Content Types for Advanced Data Handling

=) Live Content (Dbn Class) do/dx

=) Generalised multi-dimensional version of
YODAT’s distribution class.

=» Tracks exact first- and second-order statistical moments,
including mixed moments.

=3 Flexible £i11 () method: accepts coordinates,
weights, and fill fractions for dynamic updates.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 8/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Flexible Bin Content Types for Advanced Data Handling

do/dx

=3 Live Content (Dbn Class)

=) Generalised multi-dimensional version of
YODAT’s distribution class.

=» Tracks exact first- and second-order statistical moments,
including mixed moments.

=3 Flexible £i11 () method: accepts coordinates,
weights, and fill fractions for dynamic updates.

=» Inert Content (Estimate Class)

=3 Central value representation, optionally 2
with detailed error breakdowns. do/dx

=3 Encodes uncertainties as labeled {down, up}
variations to capture dependence on theoretical %
or experimental parameters.

—— Systematic uncertainty
=3 Supports both correlated and uncorrelated % %
treatments of errors.

=3 Arithmetic operations respect these uncertainty
relationships for robust statistical handling. x

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 8/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Flexible Bin Management with BinnedStorage

=) Bin wrapper class

=9 Links bin content to both local BinnedStorage
and global bin properties.

=» Provides dimension-aware methods |
for volume calculations: ||| =

dvol() for general volume, plus
dLen(), dArea() aliases for 1D and 2D. { J
.bins Q)
=) Templated accessors retrieve axis-specific numBins ()

properties seamlessly. .mergeBins ()

=» CRTP ensures intuitive method names
for first 3 dimensions.

=) BinnedStorage class
=3 Holds arbitrary data types, enabling versatile content management.
=) Flexible bin lookups: Index-based (bin(i)) and coordinate-based (binAt (x)) retrieval.

=) Supports bin masking to emulate data “gaps” without requiring bin erasure:
Mask bins by index (mask(i)) or coordinates (maskAt (x)).

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 9/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

FillableStorage: Managing Dynamic Bin Content

binning backend Bi

(Fillablestorage

<————————— introduces fill adapter

() content specialisation,
DbnSt. -— S— Est: teSt.
nStorage inherits from AnalysisObject (Estimatestorage)
().
4
N BinnedEstimate
——J
R
BinnedProfile)<-~~

=> Inherits from BinnedStorage, adding support for dynamic updates in “live” bin content.
=¥ Introduces a fill adapter to manage bin-content updates for each fill operation.
=y Ensures consistent handling of complex binning scenarios and statistical tracking.

=y Fill function returns bin position as a global index or -1 for invalid (NaN) coordinates.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 10/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Type and Dimensionality Reductions for Flexible Data Handling

=» Live to Inert Transformations
=) Live BinnedDbn objects reduce to !

inert BinnedEstimate objects. 3 '

=3 0-Dimensional Case: Counter (live) : '

reduces to Estimate0D (inert). b ((comter (pinneadtn)

=9 Easily slice higher-dimensional data ' :
into lower-dimensional subsets :
along any axis. b (Esrtmacoon)

BinnedEstimat e]

=» Scatter Objects for Visualisation

=3 Both live and inert types reduce to ScatterND
Scatter objects for plotting and e e
presentation.

=¥ Unified Metadata and Transformation Support

=» All user-facing types inherit from the AnalysisObject base class,
enabling attribute storage for metadata.

=) Global scaling operations and arbitrary transformations (e.g. lambda functions)
apply seamlessly to inert types like Estimates and Scatters.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 11115

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

HPC Support for Distributed and Parallel Workflows

=) Efficient Serialisation for MPI Communication:
=) AnalysisObject base class can be (de-)serialised into/from a std: : vector<double>.

=3 Facilitates easy communication of data across nodes in distributed environments like MPI.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 12/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

HPC Support for Distributed and Parallel Workflows

=) Efficient Serialisation for MPI Communication:
=) AnalysisObject base class can be (de-)serialised into/from a std: : vector<double>.

=3 Facilitates easy communication of data across nodes in distributed environments like MPI.

=» On-the-Fly Stacking & Merging
=) Serialised data enables efficient - === === == - o m oo a oo

stacking and merging of
l

histograms during computation.

=» Supports parallel workflows
where intermediate results can
be combined dynamically
across multiple processes.

MPI reduce

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 12/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

HPC Support for Distributed and Parallel Workflows

=) Efficient Serialisation for MPI Communication:
=) AnalysisObject base class can be (de-)serialised into/from a std: : vector<double>.

=3 Facilitates easy communication of data across nodes in distributed environments like MPI.

=» On-the-Fly Stacking & Merging
=) Serialised data enables efficient - === === == - o m oo a oo

stacking and merging of

histograms during computation.

where intermediate results can
be combined dynamically
across multiple processes.

I
=» Supports parallel workflows !

=) Optimised for Scalability

=3 Built to handle large datasets with minimal memory overhead,
making it well-suited for HPC applications.

=» Seamless integration with parallel computing frameworks ensures scalability
for big data analysis in particle physics.

=) Applications in Machine Learning: Serialised data can be easily integrated into machine learning
pipelines for model training, feature extraction, and data preprocessing.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 12/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Flexible I/O Formats for Analysis and HPC Applications

BEGIN YODA_HISTO1D_V3 /H1D_d
Path: /H1D_d

e:
Type: HistolD
Mean: 3.470588e-01

Integral: 1.700000e+01
Edges(A1): [0.000000e+00, 5.000000e-01, 1.000000e+00]
mi

s sumW2 sumW (A1) sumW2 (A1) numEntries

0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00
1.000000e+01 1.000000e+02 1.000000e+00 1.000000e-01 1.000000e+00
7.000000e+00 4.900000e+01 4.900000e+00 3.430000e+00 1.000000e+00
0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00

END YODA_HISTO1D_V3

BEGIN YODA_BINNEDHISTO<S>_V3 /H1D_s
: Dls
e:
Type: BinnedHisto<s>
Mean: 3.750000e-01
Integral: 8.000000e+00
Edges (A1): ["A"]
sumi sumi2 suni (A1) sumi2 (A1) numEntries
5.000000e+00 2.500000e+01 0.000000e+00 0.000000e+00 1.000000e+00

3.000000e+00 9.000000e+00 3.000000e+00 3.000000e+00 1.000000e+00
END YODA_BINNEDHISTO<S>_V3

=) Generalised ASCII Output
=3 Extended to support arbitrary dimensions and string-based edges for greater flexibility.

=3 Backward compatibility: YODA2 reader supports legacy YODA1 ASCII formats.

=» HDF5 Output for High-Performance Computing
=) Ideal for HPC workflows requiring high-throughput processing and scalable data management.
=» Uses the lightweight HighFive library for streamlined C++ integration.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 13/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Python API & Plotting for Seamless Integration

= Python Bindings via Cython i wlii

Model2 — §
=3 YODA provides Python bindings for scripting and]
integration into Python-based workflows.

=3 Enables efficient use of YODA objects and
operations from within Python scripts.

=) Customisable matplotlib-based Plotting

=3 Automatically generates Python scripts that
produce plots with matplotlib.

MC/Data

2D heatmaps in YODA

=3 Self-contained plots: Once the script is generated, . -
no YODA installation is required to produce the plot. ‘i
Ideal for sharing results with collaborators. .

=) Full control over plot aesthetics, allowing for customisation s
without altering the underlying data structures.

=» Share Python-generated plotting scripts with collaborators,
ensuring consistency in results and reproducibility.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 14/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Summary & Key Takeaways

=y Efficient, Scalable Data Handling

=» YODA2 supports live and inert statistical objects
with flexible bin partitioning and content storage.

[yoda.hepforge.org]

=) Optimised for large-scale datasets and lgitlab.com/hepcedar/yoda]

HPC environments through serialisation

! ki . k.io:yod
and parallel computation. [packages.spaciio:yoda]

. . [arXiv:2312.15070]
=» User-Centric Design

=» Clean and intuitive APIs in both C++ and Python.
=) Self-consistent, customisable plotting with minimal dependencies for easier collaboration.

=» Versatility & Extensibility
=3 Seamless integration into modern workflows, including machine learning and distributed computing.
=) Backward compatibility with YODA1 and support for both ASCIl and HDF5 formats.

=» Empowering Particle Physics and Beyond

=» From particle collision data to broader applications in data science and machine learning,
YODA2 is designed for robust, efficient analysis at scale.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 15/15

https://yoda.hepforge.org/
https://gitlab.com/hepcedar/yoda
https://packages.spack.io/package.html?name=yoda
https://arxiv.org/abs/2312.15070

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Backup

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 16/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Summary statistics

Analytic first- and second-order statistical moments for probably density function f(x) = dP/dx

(x) = /xeX xf(x)dx

2y _ 2
(x%) _./XEXX f(x)dx

o2(x) = (F) — ()

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 17115

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Unweighted moments

Unweighted mean and variance for finite-size sample with 1 < n < N:

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 18/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Weighted moments

Weighted mean and variance:

_ > n WnXn
W=
02(x) = . 200 (0 = S mm)” (5 W) - (2,) = (3, Woxn)”
(320 wn) (S wn)” — 3,92
with weighted Bessel factor:
B— Netit (>, wn)?

Neft — 1 B (Zn Wn)2 - Zn W/27

for effective fill count:

(X, wn)?

Nett = ~“=—5—

>, wh

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 19/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Counts and efficiencies

Closely related quantities are Poisson mean and variance:

Xp=N
o2(R) =N
Classic Monte Carlo scaling then given by
op(X) VN _ 1
(X)p N VN

Sample efficiency for selected events Ngg from a known number of total events N is

€

Nsol
N

Binomial statistics gives an estimator for the uncertainty on the efficiency

_1-9

5°()s N

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 20/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Connection to differential calculus

=) statistical histogram: a discrete approximation to entire probability density function
f(€2) = dP/dQ2 or population density dN/d2, not just a collection of fill counts

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 21/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Connection to differential calculus

=) statistical histogram: a discrete approximation to entire probability density function
f(€2) = dP/dQ2 or population density dN/d2, not just a collection of fill counts

=¥ bin measure dQ2 (or AQ) representing the volume element of the bin
crucial for differential consistency

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 21/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Connection to differential calculus

=) statistical histogram: a discrete approximation to entire probability density function
f(€2) = dP/dQ2 or population density dN/d2, not just a collection of fill counts

=¥ bin measure dQ2 (or AQ) representing the volume element of the bin
crucial for differential consistency

=> AN/AQ = [N(Q + AQ) — N(Q)] /AQ A0 dN/dQ necessitates division by bin width
=3 generally not desirable for finite bins to have the same width

=» using non-uniform bin sizes ensures statistical relative uncertainty on bin populations
is equally distributed across histogram

=3 failing to divide by the bin measure distorts the distribution away from its physical shape

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 21/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Connection to differential calculus

=) statistical histogram: a discrete approximation to entire probability density function
f(€2) = dP/dQ2 or population density dN/d2, not just a collection of fill counts

=¥ bin measure dQ2 (or AQ) representing the volume element of the bin
crucial for differential consistency

=> AN/AQ = [N(Q + AQ) — N(Q)] /AQ A0 dN/dQ necessitates division by bin width
=3 generally not desirable for finite bins to have the same width

=» using non-uniform bin sizes ensures statistical relative uncertainty on bin populations
is equally distributed across histogram

=3 failing to divide by the bin measure distorts the distribution away from its physical shape

=) actual bin populations are better computed using a discrete binning expressed
in terms of finite probabilities rather than densities

=3 awkward workaround: multiply each density by the fill volume

=) prefer to refer to this not as a histogram but a bar chart, reflecting its typical use

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 21/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Lessons from YODA1: Motivation for YODA2

-5

4L 4 v d

J

Initial goals established at YODA1’s release in 2013, but structural limitations
highlighted the need for a complete redesign.

Limited support for multi-dimensional data objects and only continuous-valued axes.
Inability to store arbitrary data types in binnings restricted flexibility.
Correct but rigid overflow bin treatment lacked flexibility for complex analyses.

No unified scheme for local and global bin indexing across multiple dimensions,
complicating data management.

Redundant internal implementations to support both C++ and Python APlIs for various
dimensionalities and content types.

Difficulty integrating “inert” scatter data types (e.g. measured data from an experiment)
with “live” binned objects generated during MC runs.

Limited, cumbersome support for representing and managing uncertainty breakdowns
and correlations in scatter data types.

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 22/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Histograms

=% generalise measured variable x to vector variable-space Q2

=) composed of vectors w with differential volume elements d2

=» partition Q into disjoint (sub)set of bins {Q,} C Q

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 23/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Histograms

=% generalise measured variable x to vector variable-space Q2

=) composed of vectors w with differential volume elements d2
=» partition Q into disjoint (sub)set of bins {Q,} C Q

=» moments in each bin b converge to summary properties of that bin’s variable-space partition

(wDy, = / W f(w)dQ
wep

(@), = / Wl f(w) d
wey

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 23/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Histograms

=% generalise measured variable x to vector variable-space Q2

=) composed of vectors w with differential volume elements d2
=» partition Q into disjoint (sub)set of bins {Q,} C Q

=» moments in each bin b converge to summary properties of that bin’s variable-space partition

(wDy, = / W f(w)dQ
wep

(@), = / Wl f(w) d
wey

=) need to recover unbinned values when expanding the partition to whole space
=» need to recover differential properties of the pdf itself as €, — dQ2(w)

=) merging bins must converge to the same result as having originally constructed
a lower-dimensional or less finely binned partition of space

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 23/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Profiles

=¥ useful class of histogram mixing binned and unbinned variable subspaces

=9 allow characterisation of the unbinned dimensions T via their moments as
projected into each partition of the bin-space ©

=) allow statistical aggregation of finite samples into “independent variable” bins 6 € ©y,
while characterising the mean dependence of the unbinned dependent variables y on 6

=¥ linearity of statistical moments again ensures consistency when merging bins

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 24/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Profiles

=¥ useful class of histogram mixing binned and unbinned variable subspaces

=9 allow characterisation of the unbinned dimensions T via their moments as
projected into each partition of the bin-space ©

=) allow statistical aggregation of finite samples into “independent variable” bins 6 € ©y,
while characterising the mean dependence of the unbinned dependent variables y on 6

=¥ linearity of statistical moments again ensures consistency when merging bins
=» unbinned space T can in general be multidimensional but canonical bin value then
ambiguous
=y definiteness retained for single-dimensional unbinned space with moments (y) and (y?)
=) profile canonical bin value is the mean (y(®©)) as a function of binned coordinates

=) nominal uncertainty given by standard error 53(0) = &p/+/Np
for effective sample count N, inbin b C 6

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 24/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Example: construction and filling

// declaration ezamples

HistolD hil; // histogram with 1 continuous axis

Profile2D pl; // profile with 2 continuously binned azes + I unbinned azis
HistoND<5> h2; // histogram with 5 continuous azes

// constructor ezamples

HistolD h3(10, 0, 100); // 10 bins between 0 and 100

const std::vector<double> edges = {0, 10, 20, 30, 40, 50};
HistolD h4(edges);

BinnedHisto<int, std::string> h5({ 1, 2, 3 }, { "A", "B", "C" })

// fill ezamples

HistolD h6(5, 0.0, 1.0);
h6.£i11(0.2);

ProfilelD p2(5, 0.0, 1.0);
p2.£i11(0.2, 3.5);

// marginalisation exzamples

Histo2D h7 = pil.mkHisto(); //< marginalise over unbinned azis

HistolD h8 = h7.mkMarginalHisto<1>(); //< marginalise over secomd binned azis
HistolD h9 = pl.mkMarginalProfile<0>(); //< marginalise over first binned azis

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 25/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Example: looping and indexing

size_t nbinsX 4, nbinsY
double lowerX 0, lowerY H
double upperX = 4, upperY = 6;
Histo2D h2(nbinsX, lowerX, upperX,
nbinsY, lowerY, upperY);

// loop over bins and fill with increasing weight

double w = 03

for (auto& b : h2.bins()) { //< iterators passes through using templated bin wrappers
h2.£ill(b.xMid (), b.yMid(), ++u);

¥
for (size_t idxY = 0; idxY < h2.numBinsY(true); ++idxY) { //< true includes overflouws
for (size_t idxX = 0; idxX < h2.numBinsX(true); ++idxX) { //< true includes overflous
std::cout << "\t(" << idxX << "," << idxY << ")\t=\t";

std::cout << h2.bin(idxX, idxY).sumW();

std::cout << std::endl;
}
std::cout << std::endl;

H2 bins using local indices + under/overflows:

(0,0) 0 (1,0) = 0 (2,0) = 0 (3,00 = 0 (4,0) = 0 (5,0) =0
(0,1) =0 (1,1) = 1 (2,1) = 2 (3,1) = 3 (4,1) = 4 (5,1) =0
(0,2) =0 (1,2) = 5 (2,2) = 6 (3,2) = 7 (4,2) = 8 (5,2) =0
(0,3) =0 (1,3) = 9 (2,3) = 10 (3,3) = 11 (4,3) = 12 (5,3) = 0
(0,4) = 0 (1,4) = 13 (2,4) = 14 (3,4) = 15 (4,4) = 16 (5,4) =0
(0,5) 0 (1,5) = 17 (2,5) = 18 (3,5) = 19 (4,5) = 20 (5,5) 0
(0,6) = 0 (1,6) = 21 (2,6) = 22 (3,6) = 23 (4,6) = 24 (5,6) =0
(0,7) =0 (1,7) = 0 (2,7) = 0 (3,7) = 0 (4,7) = 0 (5,7) =0

FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 26/15

EFFICIENT HISTOGRAMMING FOR HPC IN C++ WITH YODA

CHRISTIAN GUTSCHOW

Variadic templates and parameter packs
=» Metaprogramming using C++17 takes care of generalisation to arbitrary dimensions:

#include <iostream>
#include <string>
#include <tuple>
#include <vector>

template <typename... Args>
1 MyHisto {

publi
MyHisto(const std::vector<Args>& ... edges)
_axes(edges ...) { }

size_t dim() const { return sizeof...(Args); }

template<size_t I>
void printBinning() con
if constexpr (I < sizeof...(Args)) {

std::cout << "Axis" << (I+1) << "has";
::icout << std::get<I>(_axes).size();
cout << "bins." << std::endl;
printBinning<I+1>();
}

}

void print() const {
std::cout << dim() << "D:" << std::endl;
printBinning<0>();

private:
std::tuple<std::vector<Args>...> _axes;
};
FOSDEM 2025, Brussels, 02 Feb 2025 chris.g@cern.ch 27/15

