
Enhancing Airflow for
Analytics, Data Engineering,
and ML at Wikimedia

Ben Tullis, Balthazar Rouberol
FOSDEM 2025

Let’s set the scene

Wikimedia’s Data Platform
“A collection of systems and services that enable data producers and consumers to discover, use, and
collect data to derive insights, conduct research, and build new data products.”

https://wikitech.wikimedia.org/wiki/Data_Platform

● Data Engineering
● Experiment Platform
● Metrics Platform
● Search Platform
● Data Platform SRE

https://wikitech.wikimedia.org/wiki/Data_Platform

Airflow within the Data Platform
Self service data pipelines for WMF engineering and data-science teams.

● Analytics: produce quality analytics metrics and datasets for consumption by WMF and the
community

● Search: facilitate the timely update of Mediawiki search and Wikidata graph DB queries
● Research: generate datasets for our research teams, related to demographic, pageviews, etc
● Product analytics: enable WMF engineering teams to work with feature instrumentation

A typical data
pipeline
What: batch data processing jobs sourcing data
from HDFS and writing to HDFS, Cassandra,
Druid, Swift, …
How: mostly Spark jobs running on a YARN
cluster, working on data partitions, based on their
availability

Airflow is used to orchestrate these Spark jobs.

CC by SA 4.0, Tomere

Partition sensors

Sp
ar

k
jo

bs

The initial Airflow infrastructure

The initial Airflow infrastructure
● Airflow components run as systemd services, using custom Puppet code
● Kerberos authentication to Hadoop, YARN, Hive & Spark
● Local Executor
● Local task logging
● A shared PostgreSQL server with manual failover

Problem statement: Reliability
● LocalExecutor forced us to cause downtime when we had to restart the airflow scheduler
● The lack of HA PostgreSQL caused DB maintenances to affect all instances
● Local logging and DAGs generating a lot (1500+) of mapped tasks sometimes filled up our disk,

causing outages
● High number of tasks causes a high number of connections on PG

Problem statement: Scalability
● Some instances were CPU/network/storage bound, causing delays during unexpected backfills
● LocalExecutor made it hard to horizontally scale
● Using bare metal hosts made it hard to vertically scale often

Problem statement: UX & Security
● No RBAC / logging in place as the UIs are only internally exposed, through SSH tunnels
● Everybody is Admin
● No per-component firewall rules

And they have a plan 🤖

https://phabricator.wikimedia.org/T362788

https://phabricator.wikimedia.org/T362788

General direction
● Single points-of-failure should be eliminated
● Airflow services should be resilient to the downtime of any host.
● The system should make use of systems we already invested in
● The migration should be as transparent as possible for users

The Data Platform Kubernetes cluster

The Data Platform Ceph Cluster
Five servers racked by November 2022
A high-density chassis, optimised for disk storage. 24 drive bays.
1PB of available HDD space
150TB of available SSD space

Proposed architecture
Airflow
● Uses the KubernetesExecutor to run DAG tasks as Pods
● Stores the task logs remotely
● Has its dedicated HA PostgreSQL cluster

PostgreSQL
● Managed by a Kubernetes Operator
● Automatic leader failover
● Exports WALs and base backups to Ceph

Ceph
● RBD (block device) for PG data
● CephFS (distributed filesystem) for DAGs and Kerberos tokens
● RadosGW (S3) for PG WALs, PG base backups and task logs

Proposed architecture

Setting up Ceph with Kubernetes
● Integration of RBD with Kubernetes done using ceph-csi-rbd
● Integration of CephFS with Kubernetes done using ceph-csi-cephfs
● RadosGW/S3 exposed behind an anycast endpoint to minimize network hops and maximize

bandwidth

Running PostgreSQL in Kubernetes
● We decided* to use cloudnative-pg
● Each cluster is composed of 2 PG servers and 3 PGBouncer pods
● WALs and base backups are uploaded to S3
● Backups exported outside of Ceph every night

* https://phabricator.wikimedia.org/T362999

https://cloudnative-pg.io/
https://phabricator.wikimedia.org/T362999

Security and RBAC
● Public facing: https://airflow-analytics.wikimedia.org
● Authenticated UI (OIDC)
● Authenticated API (Kerberos)
● User roles and permissions derived from LDAP groups

https://airflow-analytics.wikimedia.org

Our migration plan
● Migrate the webserver first
● Test a DAG of each Operator in our test instance
● Migrate the database
● Migrate the scheduler and DAGs
● Fix DAG errors until morale improves

What held us back
● Kerberos API authentication was broken

○ Fixed by https://github.com/apache/airflow/pull/43662
○ Released in apache-airflow-providers-fab 1.5.1

● The codegend̓ Airflow API client does not support Kerberos
○ We have an internal hack to make it work

● Migrating instances with a lot of DAGs was a large lift and shift
○ Some took several attempts as we had to rewrite/fix DAGs
○ It took some finessing to integrate task pods with our service mesh

https://github.com/apache/airflow/pull/43662
https://gitlab.wikimedia.org/repos/data-engineering/airflow-dags/-/blob/main/wmf_airflow_common/clients/airflow.py

What we get out of it today
● Improved reliability
● Improved security
● Improved scalability
● Improved UX
● Reusable infrastructure building blocks
● Increased adoption

What we’ll invest on
● Leverage KubernetesPodOperator to allow DAG authors to run custom Docker images
● Migrate the monthly Wikipedia dumps* bespoke system to an Airflow DAG
● Help other teams get started with Airflow

* https://meta.wikimedia.org/wiki/Data_dumps

https://meta.wikimedia.org/wiki/Data_dumps

Thank you!

