

Multi-factor authentication
for mail clients

or

“How do we get rid of passwords?“

Ben Bucksch

About Ben Bucksch
● IMAP, POP3, SMTP authentication

infrastructure and logic in Thunderbird

● Autoconfiguration standard,
invented ISP DB

● 4 different OAuth2 for mail client
implementations:

– Mail client for largest German mail
service provider

– Owl: Office365 client for
Thunderbird

– Reviewer of OAuth2 impl in
Thunderbird

– Parula

● Thunderbird

– 25 years core contributor

– Thunderbird project leadership
(was member of Council)

– Speaking for myself, not for the
project

● Consultant

● Created multiple companies

Requirements

Needs, from end user POV:
● Setup: only:

– E-Mail address
– Password or MFA

● After setup: Continuous mailcheck
without interrupt: no breakdown, no re-login etc

● No evi1 h4x0rs

Autoconfig

● Works since 15 years, used by 10+ mail clients
and lots of domains

● Well-known URLs; XML
● Configs for ~90% mail accounts automatic
● IETF Draft adopted, hopefully soon RFC
● ISPDB: https://ispdb.net (to be launched)
● https://autoconfigure.email (to be launched)

https://ispdb.net/
https://autoconfigure.email/

Autoconfig

<clientConfig version="1.1">
<emailProvider id="office365.com">
 <domain>onmicrosoft.com</domain>
 <domain>mail.protection.outlook.com</domain><!-- MX e.g. example.mail.protection.outlook.com -->
 <displayName>Microsoft 365</displayName>
 <incomingServer type="imap">
 <hostname>outlook.office365.com</hostname>
 <port>993</port>
 <socketType>SSL</socketType>
 <authentication>OAuth2</authentication>
 <username>%EMAILADDRESS%</username>
 </incomingServer>
 <incomingServer type="exchange">...</incomingServer>
 <outgoingServer type="smtp">…</outgoingServer>
</emailProvider>
<calendar>...</calendar><contacts>...</contacts><fileShare>...</fileShare>
<oAuth2>
 <issuer>login.microsoftonline.com</issuer>
 <authURL>https://login.microsoftonline.com/common/oauth2/v2.0/authorize</authURL>
 <tokenURL>https://login.microsoftonline.com/common/oauth2/v2.0/token</tokenURL>
 <scope>IMAP.AccessAsUser.All POP.AccessAsUser.All offline_access</scope>
</oAuth2>
</clientConfig>

https://autoconfig.example.com/mail/config-v1.1.xml?emailaddress=fred@example.com

Spec: https://www.bucksch.org/1/projects/thunderbird/autoconfiguration/

https://www.bucksch.org/1/projects/thunderbird/autoconfiguration/

PACC

● Autoconfig, but as IETF customs
● Uses DNS SRV
● JSON
● Assumes some „best practices“, like

IMAP username = email address
● → Requires mail provider to adapt config to it
● → Cannot reflect many existing configs
● Internet Draft, to be discussed

Authentication: MFA

● Passwords must die
● OAuth2 has multiple problems for mail clients
● Passkey

OAuth2: Main problem points

● Configuration
– URLs, Scope etc.

● Client registration
● Expiry
● OAuth2 loose: Framework, not protocol
● Goal: Fixing them

Configuration

● OAuth2 doesn‘t spec how to get the config
● → All URLs hardcoded
● → Only Google, Microsoft, Yahoo, Apple, ...
● → Small ISPs, Self-hosting, Privacy - impossible
● Solutions:

– OpenID Connect with .well-known/
– RFC .well-known/
– Autoconfig

RFC 6749 3.1 „The means
through which the client
obtains the location of the
authorization endpoint are
beyond the scope of this
specification."

Client registration

● C mail clients, P mail providers → C * P
● RFC 2971 (IMAP ID):

“Servers MUST NOT deny access to or refuse service for a client based on
… the ID command.“ – Question to audience: Why? (Open-Source...

● RFC 6749 Section 2.2 (OAuth2):
– Client ID is required

– Registration is at the mercy of the ISP

● Anti-competitive: ISPs make registration hard or
practically impossible.

● Directly against the idea of Open-Source

Web browser

● Full interactive web browser

● → Mail without web impossible

● → Many non-UI clients (Alexa, server, console, car etc.) locked out

● Security: Mail in car → OAuth2 → Browser → Monthly security updates for
20 years? → Security holes in the car → Liability

● Complexity: Even Win/Android: Browser security updates → Cannot ship
browser → Need system browser → Dependent on system APIs

● Need to watch URL changes to know when done and get auth code

● Solution suggestion/idea: Not HTML, but challenge/response:

– Server asks question in plain text, client sends response in plain text.

– Waiting on server, with message.

Unreliable

● Does not spec actual login
– AuthCode could be sufficient for login to IMAP

– OAuth2 (currently) doesn‘t solve any problem that the mail client has

● Lacks hard guarantees
● Users always blame the UI/client

– → Mail client needs reliability

Expiry
● refresh_token is optional; expiry time is optional

● access_token -> refresh_token
– → Client needs to cache and repeat any and all server calls.

E.g. Copying 1000 emails → Coffee → Login expired in the middle

● refresh_token -> interactive login
– → Client needs to jump from library code to interactive, in any function

– → Makes library APIs and app code complicated, e.g. all library
functions need a login callback

● How to do mail check reliably?
– User waiting for specific mail, but mail check expired.

● Cannot ring phone, just for login. User sleeping (at other time).

● „I‘m sorry, Dave, I‘m afraid I cannot check mail anymore. I hope it wasn‘t anything important.“

– Big difference between expiry 5 min, 12 h, 6 months

● Username+password don‘t have such problems

Error handling

● Need to watch URL changes to know when done or failed

● Error message only in English (US-ASCII) → No error message for end user

● Browser window closed. Stuck without knowing why: Crash? Error message
in HTML? User changed mind?

● OAuth2 error codes are unhelpful: "access_denied"

– Password wrong → Try again

– Rate limited, Account suspended→ Do not try again

– User changed mind → Close dialog

● Mail client is completely blind. No idea how to continue.

● Solution: Specify detailed error codes, with error classes, and an error
message for end user.

Password vs. OAuth2

● That's why email clients still use username and
password. It's simple and predictable. I know
the input and the output. It's clearly defined. I
have no config issues. That's the whole reason.

● If we want 2FA for email clients, we need to nail
it down, so that it's reliable and not dependent
on the implementation at the service provider.

● → Mauth
● → Autoconfig

OAuth Profile for Open Public Clients

● Internet Draft. Adopted by IETF WG
https://www.ietf.org/archive/id/draft-ietf-mailmai
nt-oauth-public-00.html

● Defines exact client flow
● Config .well-known, similar OpenIDConnect
● Requires Dynamic Client Registration RFC7591
● Defining OAuth2 scopes
● Expiry: „should not“ expire

https://www.ietf.org/archive/id/draft-ietf-mailmaint-oauth-public-00.html
https://www.ietf.org/archive/id/draft-ietf-mailmaint-oauth-public-00.html

MAuth
● Similar to Open Public Clients, alternative
● But hardcoded (= disabled) client ID „open“
● No expiry
● Detailed error codes
● Scopes defined for IMAP read, IMAP write, POP3, SMTP etc.

Passkey

● SASL standard
● Vendor lock-in: Need free implementations

SASL Passkey
● https://benbucksch.github.io/sasl-passkey/draft-bucksch-sasl-passkey.html

https://github.com/mustang-im/mustang/wiki/Auth-Passkey

● Create Passkey on ISP website, and stored in OS passkey manager

● Mail app uses OS passkey APIs (1 C function, like web credentials.get())

● Flow

1) Server sends challenge

2) mail app passes challenge 1:1 to OS passkey APIs (1 C functions)

3) OS does auth (fingerprint, face, device PIN)

4) OS signs challenge with private key of passkey

5) Mail app returns 1:1 to server

6) Server validates response with public key of passkey

● Retain login with SASL Rememberme (JWT, refresh token, app password, ...)

https://benbucksch.github.io/sasl-passkey/draft-bucksch-sasl-passkey.html
https://github.com/mustang-im/mustang/wiki/Auth-Passkey
https://developer.mozilla.org/en-US/docs/Web/API/CredentialsContainer/get

Need software: APIs and libs

● Windows, macOS, iOS, Android
● But bound to vendor cloud: Lock in!
● Nothing on Linux
● Define API between app and passkey manager
● Implement DLL/lib to switch between managers
● Implement a passkey manager and device sync

– Bitwarden, KeePass etc.

● Need your help with that!

