
Spegel
Stateless cluster local OCI registry mirror

$ whoami

Philip Laine

● Swedish + Finnish living in Berlin
● Spegel creator
● Former FluxCD maintainer

Open to work!

Where are we today

Introduction
01

Distributing Images

Fault tolerance depends on image availability.

Startup speed is dependant on the size of the image and registry performance.

External traffic adds to the cloud bill.

Availability

Cost

Speed

Public registries limit the
bandwidth

Out in the Wild

Docker Hub and
k8s.registry.io have limits

GHCR, Docker Hub, Quay,
ACR, ECR,

Quay removed images from
public registry

Rate Limits Outages

Bandwidth Image Removals

Two Options

Copy all required images to a private
registry and change all image

references.

Cache images in private registry as
they are being pulled.

Copying all images Pull through cache

Let’s learn something

Background
02

Image Spec

Describes the structure of an OCI artifact.

● An image is composed by multiple components
● Index of manifest is top level
● Reference are done through digests

https://oci.dag.dev/?image=ghcr.io%2Fspegel-org%2F
spegel%3Av0.0.30

https://oci.dag.dev/?image=ghcr.io%2Fspegel-org%2Fspegel%3Av0.0.30
https://oci.dag.dev/?image=ghcr.io%2Fspegel-org%2Fspegel%3Av0.0.30

Distribution Spec
Describes how a client should pull images from a registry.

GET /v2/

Indicate support for the distribution spec.

GET /v2/:name/manifests/:reference

Get manifest content for tag or digest.

GET /v2/:name/blobs/:digest

Get layer content for layers.

An alternative way of looking at things

Solution
03

Planting the Seed

● Presentation about saving a cluster at 1 AM
● Docker Hub is down
● No ability to scale up
● Docker export the images from old node
● SCP image to new node

Open Questions

Can mirrors be
configured locally?

Registry
Is it possible to
implement a registry?

MirroringDiscovery
How do I discover images

on other nodes?

Images
How are images stored
on disk by Containerd?

Spegel

Enables Kubernetes nodes to pull
images from each other.

Up to 80%
Increase in image pull performance

Layer Storage
Containerd stores all pulled compressed layers on disk by default which
are easily accessible to read from the file system.

/var/lib/containerd/io.containerd.content.v1.content/blobs

Spegel will piggyback on the work the Containerd is doing which is how it
is able to be stateless.

In Kubernetes garbage collection is done when disk pressure becomes too
high.

Architecture

Content Discovery
A critical part of Spegel is to know which node in the cluster to route the
request to.

● Critical that solution is stateless and fault tolerant
● DHT is used to advertise and lookup layers
● All nodes will advertise all digests stored locally on disk
● When request is received lookup is done using digest

https://github.com/libp2p/go-libp2p-kad-dht

https://github.com/libp2p/go-libp2p-kad-dht

Compatibility
Status Distribution

AKS

K3S and RKE2

EKS

GKE

https://spegel.dev/docs/getting-started/#compatibility

https://spegel.dev/docs/getting-started/#compatibility

Use Cases
While the initial intent with Spegel was to build a best effort cache the use
cases have expanded past my expectations.

● Best effort cache before primary cache
● Homelabbers avoiding Docker Hub rate limiting
● Air gapped environments
● Optimize distribution of machine learning models

Somethings to look forward to

Future
04

Challenges

Prioritize peers within the same availability zone.

Spread traffic to avoid overloading a single instance.

Improve Go HTTP copy performance.

Topology Aware Routing

Proxy Performance

Fair Load Balancing

OCI Volumes
● Alpha feature since Kubernetes v1.31
● Uses same underlying logic as image pulling
● Useful for AI workloads to load models separately
● Upcoming feature in Containerd

https://github.com/containerd/containerd/issues/10496

https://github.com/containerd/containerd/issues/10496

Multipart layer fetch
● Splits large layer fetching into multiple requests
● Requests will be run in parallel
● Spegel will enable distributing the load across multiple nodes

https://github.com/containerd/containerd/pull/10177

https://github.com/containerd/containerd/pull/10177

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

Thanks!
Do you have any questions?
philip.laine@gmail.com
@phillebaba

https://spegel.dev/
https://github.com/spegel-org/spegel

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr

