
Ada and Mini-Ada
A solution to the two-language problem

FOSDEM 2025

Dr Gautier de Montmollin

https://alire.ada.dev/crates/hac

https://alire.ada.dev/crates/hac


Prototyping

data processing,

code generation,

simulations,

shell scripts,

plug-ins,

exercises, …

Large applications

Production code

Domain specific

e.g. SQL

Traditionally: dynamic, duck 

typing; interactive workflow 

with global, persistent data

Static typing (for predictability 

and performance);

data loaded and managed by 

the application

HAC* ←   Ada →   “full Ada” system

“Breaking the two-language wall”

*) HAC = HAC Ada Compiler



Two-language cases

Case 1: the Prototype – Implementation cycle
- Sketch in pseudo-code or prototype in scripting language X. 

Motivation: abstraction, “clean hands”.

- Implementation in Y. Motivation: run-time speed; team Y
cares about bugs.

Issues: Complex process; may require two separate teams.

Solution:

Prototype with HAC (HAC Ada Compiler), use “Full Ada” *

for the implementation. Few rewrites if any.

* e.g. GNAT (the GNU Ada compiler), or another Ada compiler

X Y



Two-language cases

Case 2: Coexistence
- Part in scripting language X (frequent adjustments).

- Part with “heavy-lifting” in Y.

- Interface i between both parts.

Issue: May require three teams.

Solution:
• Use “Full Ada” or possibly HAC for X,

• Use only “Full Ada” for Y.

X Yi



Two-language cases

Case 3: Embedding
- Application in X (industrial software, game, …).

- Scripting embedded in the application, language Y.

Issues: For an internal software, needs knowledge of both X
and Y for some people.

Solution:

Embed HAC in the “Full Ada” application.

X
Y



Embedding HAC in a “Full Ada” application

Advantages:

– Same language +/- same people

– Code sharing:  Ada packages shared by the HAC program and its host

– Same type system (subtypes, enums, arrays, records, …)



Embedding HAC in a “Full Ada” application

with Ada.Command_Line, HAC_Sys.Builder, HAC_Sys.PCode.Interpreter;

procedure HAC_Mini is

use Ada.Command_Line, HAC_Sys.PCode.Interpreter;

BD : HAC_Sys.Builder.Build_Data;

post_mortem : Post_Mortem_Data;

begin

if Argument_Count > 0 then

BD.Build_Main_from_File (Argument (1));

if BD.Build_Successful then

Interpret_on_Current_IO (BD, 1, "", post_mortem);

end if;

end if;

end HAC_Mini;



Live demo, with data exchange

In the HAC project: ./demo/data_exchange_simple

Embedding HAC in a “Full Ada” application


