UWhas Leslie
- Lamport Right?

Developer Advocate @HashiCorp

Member #2 of the Leslie Lamport
fanclub

Sarah Chrishoff

Staff Software Engineer @Edera

Founder & Member #1 of the
Leslie Lamport fanclub

A little history lesson
Consensus
Consistency
Concurrency

Clocks

Gossip

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRl International

Reliable computer systems must handle malfunctioning components that give conflicting information
to different parts of the system. This situation can be expressed abstractly in terms of a group of
generals of the Byzantine army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. However, one or more of them
may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that
the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is
solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound
two loyal generals. With unforgeable written messages, the problem is solvable for any number of
generals and possible traitors. Applications of the solutions to reliable computer systems are then
discussed.

Categories and Subject Descriptors: C.2.4. [Computer-Communication Networks]: Distributed
Systems—network operating systems; D.4.4 [Operating Systems]: Communications Management—
network communication; D.4.5 [Operating Systems]: Reliability—fault tolerance

General Terms: Algorithms, Reliability
Additional Key Words and Phrascs: Intcractive concistoney

Emperor Romanos

In 1034 Emperor
Romanos Il becomes
ill

Fohin the Ewnuch

Brother of Michael

Our Cast

Empress Loe

Wife of Romanos and
allegedly responsible
for poisoning him

Wit

The most feared
general in the
Byzantine Army

Mlichael the
Charr

Lover of Zoe brother
of John

Harald
Sigurdsson

Mercenary soldier,
future king of
Denmark

e |f only one general attacks they will be
defeated

e |f none of the generals attack, they both
live to fight another day

e |f both generals attack they take the city

mTwoganutaﬂs@’m@eem

| am going to attack a 10am,
please confirm

| am confirming, your
confirmation please confirm
my message so | know we
are ready to attack

| will also attack at 10, please
confirm you received my
confirmation

| will also attack at 10, please
confirm you received my
confirmation

mByzanﬁmC}'wwa.&@m@@em

Michael lll
(C)
Attack Retreat
——
George Manilakes Attack Harald Sigurdsson
(L1) (L2)

miggzanfmegmwa&@m@eem

General Messages Outcome
Commander L1: Attack L2: Attack
Lieutenant 1 C: Attack L2: Retreat Inconclusive

Lieutenant 2 C: Retreat: L2 Attack Inconclusive

mByzanﬁmC}'anwa.&@m@@em

Michael Il
(©)

o B

Attack Attack
Attack

|

George Manilakes Altach Harald Sigurdsson et L ”("E:”"”Ch

(L1) Attack P (L2) Attack P traitor
MR

J

r 3

Attack

Retreat

mi?yzanfmegmwaﬂs@m@&m

General Messages Outcome
Commander L1: Attack L2: Attack L3: Attack Attack
Lieutenant 1 C: Attack L2: Attack L3: Retreat Attack
Lieutenant 2 C: Attack: L2 Attack L3: Retreat Attack

Lieutenant 3 T

C: Attack L1: Attack L2: Attack

mByzanﬁmC}'anwa.&@m@@em

Michael Il
(C)
traitor

Attack I Retreat
Attack

l

G At} 3C ¢ m— ¢ Retreat
George Manilakes As Harald Sigurdsson ks John the Eunuch

(L1) Attack == (L2) Attack > (L3)

Attack

Retreat

mi?yzanfmegmwaﬂs@m@&m

General Messages Outcome
Commander T L1: Attack L2: Attack L3: Retreat

Lieutenant 1 C: Attack L2: Attack L3: Retreat Attack
Lieutenant 2 C: Attack: L2 Attack L3: Retreat Attack
Lieutenant 3 C: Retreat L1: Attack L2: Attack Attack

Step 1

To solve the problem Leslie Lamport proposes that the
formula to achieve consensus is as follows

Sm+1

Where m is the number of traitors

Sﬁeyk@ay@e&’@u&v&&

Traitors Generals
1 4

2 7

3 10

4 13

General Messages Outcome
Commander L1: Attack L2: Attack L3: Attack L4: Attack L5: Attack Attack
Lieutenant 1 C: Attack L2: Attack L3: Retreat L4: Retreat L5: Attack Attack
Lieutenant 2 C: Attack: L2 Attack L3: Retreat L4: Retreat L5: Attack Attack
Lieutenant 3T [C: Attack L1: Attack L2: Attack L4: Retreat L5: Attack

Lieutenant4 T | C: Attack L1: Attack L2: Attack L3: Retreat L5: Attack

Lieutenant 5 C: Attack L1: Attack L2: Attack L3: Retreat L4: Retreat Attack

General Messages Outcome
Commander T | L1: Attack L2: Retreat L3: Retreat L4: Attack L5: Attack

Lieutenant 1 C: Attack L2: Retreat L3: Retreat L4: Retreat L5: Attack Retreat
Lieutenant 2 C: Retreat: L1 Attack L3: Retreat L4: Retreat L5: Attack Attack
Lieutenant 3 C: Retreat L1: Attack L2: Retreat L4: Attack L5: Attack Attack

Lieutenant4 T

C: Attack L1: Attack L2: Attack L3: Attack L5: Attack

Lieutenant 5

C: Attack L1: Attack L2: Retreat L3: Retreat L4: Retreat

Retreat

TW-WZ

General Messages Outcome
Commander T | L1: Attack L2: Retreat L3: Retreat L4: Attack L5: Attack L6: Retreat

Lieutenant 1 C: Attack L2: Retreat L3: Retreat L4: Retreat L5: Attack L6: Attack Retreat
Lieutenant 2 C: Retreat: L1 Attack L3: Retreat L4: Retreat L5: Attack L6: Attack Retreat
Lieutenant 3 C: Retreat L1: Attack L2: Retreat L4: Attack L5: Attack L6: Attack Attack
Lieutenant4 T | C: Attack L1: Attack L2: Attack L3: Attack L5: Attack L6: Attack

Lieutenant 5 C: Attack L1: Attack L2: Retreat L3: Retreat L4: Retreat L6: Attack Retreat

Lieutenant 6

C: Retreat L1: Attack L2: Retreat L3: Retreat L4: Attack L5: Attack

Retreat

Step 2

To identify invalid data a number of voting rounds are
needed

+1

Where tis the number of traitors

1. Every lieutenant sends their received value to every
other lieutenant

2. The lieutenant attempts to find an outcome and then
sends this result to the other lieutenants

3. If lieutenant uses this data to try find an outcome

TW-Ws

General Messages Outcome
Lieutenant 1 C: Attack L2: Retreat L3: Retreat L4: Retreat L5: Attack L6: Retreat Retreat
Lieutenant 2 C: Retreat: L1 Attack L3: Retreat L4: Retreat L5: Attack L6: Attack Retreat
Lieutenant 3 C: Retreat L1: Attack L2: Retreat L4: Attack L5: Attack L6: Attack Attack
Lieutenant4 T | C: Attack L1: Attack L2: Attack L3: Attack L5: Attack L6: Retreat Attack
Lieutenant 5 C: Attack L1: Attack L2: Retreat L3: Retreat L4: Retreat L6: Retreat Retreat

Lieutenant 6

C: Attack L1: Attack L2: Retreat L3: Retreat L4 Retreat L5: Attack

Retreat

Ggewa@s-ﬂoumfs

General Messages Outcome
Lieutenant 1 C: Attack L2: Retreat L3: Retreat L4: Retreat L5: Attack Retreat
Lieutenant 2 C: Retreat: L1 Attack L3: Retreat L4: Retreat L5: Attack Attack
Lieutenant 3 C: Retreat L1: Attack L2: Retreat L4: Attack L5: Attack Attack
Lieutenant4 T | C: Attack L1: Attack L2: Attack L3: Attack L5: Attack Attack

Lieutenant 5

C: Attack L1: Attack L2: Retreat L3: Retreat L4: Retreat

Retreat

Solufion

3m+1 Wa&

W (Tolerance €o bad aclows
CSy/sfem (Tolerance €o nebwork:

Eventual

Attack!

Ack, No, Eat!
Attack!

We Attack!

We
Attack?

We
Attack?

Weak

We What What do?
Attack? do?

Strong

Attack
!

Attack!

We What What do?
Attack? do?

Kitty
is StUCK iN
tHe tree!

KiTTY! THANKS
INVINCIBLE!

Strong

2 {

Yes, BUt No.
It's Just A Bit
out of SYNC.
CHeCK AGAIN.

wWew, T'u 8e!
YoU're RiGHt! \

Things in Common

What is a
computation?

What is @ A computation is a
computation? sequence of steps.

What is a step?

What is a step? A transition from
one state to a next

nwvariance

Bose=n=1

Inductive=n=1&n +1

Once an engineer understands what a
computation is and how it is described,
she can understand the most important
concept in concurrency. invariance.

= Loslie Lampont, Teaching
Ccmcwmemy

‘“integer 7;
Li0: blz] := false;
Ii1: if k # 7 then
Li2: begin cli] := true;
Li3: if blk] then k := 1
go to L1l
end
else
I74: begin c[i] := false;
for j := 1 step 1 until N do
if 7 # 7 and not c[j] then go to L7l

end;
critical section;
¢c[z] := true; b[z] := true;

remainder of the cycle in which stopping is allowed;
go to 17207

PLEASE

NOW SERVING

begin integer £ ;
L1: noncritical section ;

choosing(i] := 1 ;
M : number|i] := 1+ mazimum(number[l], ..., number[N]) ;
choosing(i] := 0 ;
for £ =1 step 1 until N do
begin

L2: if choosing[k] # 0 then goto L2 ;
L3: if number(k] # 0 and (number[k], k) < (number[i], 1)
then goto L3 ;

end ;
critical section ;
number(i] := 0 ;
goto L1

end

Time Clocles, and the Ondeni

MMSy

Operating R. Stockton Gaines
Systems Editor

Time, Clocks, and the
Ordering of Events in
a Distributed System

Leslie Lamport
Massachusetts Computer Associates, Inc.

The concept of one event happening before another
in a distributed system is examined, and is shown to
define a partial ordering of the events. A distributed
algorithm is given for synchronizing a system of logical
clocks which can be used to totally order the events.
The use of the total ordering is illustrated with a
method for solving synchronization problems. The
algorithm is then specialized for synchronizing physical
clocks, and a bound is derived on how far out of
synchrony the clocks can become.

Key Words and Phrases: distributed systems,

A distributed system consists of a collection of distinct
processes which are spatially separated, and which com-
municate with one another by exchanging messages. A
network of interconnected computers, such as the ARPA
net, is a distributed system. A single computer can also
be viewed as a distributed system in which the central
control unit, the memory units, and the input-output
channels are separate processes. A system is distributed
if the message transmission delay is not negligible com-
pared to the time between events in a single process.

We will concern ourselves primarily with systems of
spatially separated computers. However, many of our
remarks will apply more generally. In particular, a mul-
tiprocessing system on a single computer involves prob-
lems similar to those of a distributed system because of
the unpredictable order in which certain events can
occur.

In a distributed system, it is sometimes impossible to
say that one of two events occurred first. The relation
“happened before” is therefore only a partial ordering
of the events in the system. We have found that problems
often arise because people are not fully aware of this fact
and its implications.

In this paper, we discuss the partial ordering defined
by the “happened before” relation, and give a distributed
algorithm for extending it to a consistent total ordering
of all the events. This algorithm can provide a useful
mechanism for implementing a distributed system. We

Elccmsaae Son wan it & atcala smadbad fae walbdivn ave

Events in a

.Camfm‘e Clocles

I attack at 10:30 l
(timestamp: 08:42)

l attack at 20:30 I
(timestamp: 08:41)

.Camlfwvf Clocles

® [Every General has a Logical counter t

® f[fverytime an event occurs t := t+1

® FEverytime amessageissentt:=t+l,tis
also attached to the message

® When a message is received if t™ > t, t:=
t'+1

.Camlfwvf Clocles

® Given event a happens before event b then the Lamport
clock for a will be less than the Lamport clock for b

e |f a Lamport clock for ais less than the Lamport clock
for b it does not guarantee the event happened before
the other, both events could be concurrent

® |tis possible to have two events with the same
timestamp

.Camlp.ove Clocles

attack at 10:30

° I (timestamp: 1) l o
10

10
ttack at 20:30
0 | 10 ° 10

(timestamp: 3)

Camlpm‘e C@ocﬁaConwmemy

attack at 10:30 I

o ' (timestamp: 1)
10

10
ttack at 20:30
o1 10 ° 10

(timestamp: 1)

.Camlfwvf Clocles: TicBreales

® Given two messages with the same timestamp a tiebreak
must be used to determine order

® Tiebreak can use any algorithm, common approach is to
using a lexicographical order on node name or a shared
and pre-defined order

Ueclor Clocks

e |[f a Lamport clock for ais less than the Lamport clock
for b it does not guarantee the event happened before
the other, both events could be concurrent

® Vector clocks function in a similar way to Lamport clocks
except rather than a single scalar value for the
timestamp they use a vector of scalar values, with one
dimension per node i.e <1,2,3,0>

® Comparing vectors allows concurrency to be identified

V Gossip Profocols
\\ (Slightly Lampont, Buf move fun!)

Al

=%

gt

v

g9 S ;
v c I i
wieo)
U--W,. W
qV\M) v\“
i R 4 %
n._w..“ Z
w et Z
-t Z
o

nDk.

.

,..mQ

.

<6 |

+ %

Vv 3

ST

[

A

N

<

o’

©

A
..lv/

o
".\M

<
o N
5«
=

be
.ﬁ

00?4\4

te |
L d

?QV’\dOW
Naumb€,

9€NEe

! say
ello

a
e

r&:(qos‘?

Conclusion

e Robinhood Outage in 2020 was caused
by someone who removed a statement
that updated Lamport Clocks

e CloudFlare Byzantine Failure

First Picture of a Byzantine Fault? p
loneywell

At 12:12 GMT 13 May 2008, a NASA Space Shuttle was loading hypergolic fuel for mission
STS-124 when a 3-1 split of its four control computers occurred. Three seconds later, the
split became 2-1-1. During troubleshooting, the remaining two computers disagreed

(1-1-1-1 split). Complete system disagr . But, none of the computers or their
intercommunications were faulty! The single fault* was in a box (MDM FA2) that sends
messages to the 4 computers via a multi-drop data bus that is similar to the MIL STD 1553
data bus. This fault was a simple crack (fissure) through a diode in the data link interface.

-

Figuroi. vahws(wdegm;pan)dafwemappeamlogomwghmeﬁbon - Red arrows.

* the Byzantine Assassin
4

https://www.pymnts.com/news/investment-tracker/2020/robinhood-outage-shows-cracks-in-platform-model/
https://blog.cloudflare.com/a-byzantine-failure-in-the-real-world/

Nic Jackson Sarah Christoff

@sheriffjackson.bsky.social @schristoff.bsky.social

linkedin.com/in/jacksonnic linkedin.com/in/schristoff

http://linkedin.com/in/schristoff
http://linkedin.com/in/schristoff

Refferences

e Leslie Lamport
O The Buyzantine General Problem

How to make a Multiprocessor Computer That Correctly Executes Multiprocess Programs

@)
O Teaching Concurrency
)

Deconstructing the Bakery to Build a Distributed State Machine
o E. W.Dijkstra

O Solution of a problem in concurrent programming control

https://lamport.azurewebsites.net/pubs/the-byz-generals.pdf
https://courses.cs.washington.edu/courses/cse548/10wi/Lamport.pdf
https://lamport.azurewebsites.net/pubs/teaching-concurrency.pdf
https://lamport.azurewebsites.net/pubs/bakery/dbakery-complete.pdf
https://dl.acm.org/doi/10.1145/365559.365617

