
MySQL Network Protocol: A walkthrough

Daniël van Eeden

PingCAP

FOSDEM, February 2025

Agenda

Introduction
Connection Setup

Handshake
TLS & Compression
Authentication

Command Phase
Queries & resultsets
Prepared statements

Replication

Who am I?

Daniël van Eeden.

Working for PingCAP on TiDB (MySQL Compatible database, written in Go). Long
time MySQL user.

Interested in the MySQL protocol because of contributions to:

▶ Wireshark

▶ go-mysql

▶ TiDB

▶ MySQL

▶ DBD::mysql (Perl)

Who am I?

Daniël van Eeden.

Working for PingCAP on TiDB (MySQL Compatible database, written in Go). Long
time MySQL user. Interested in the MySQL protocol because of contributions to:

▶ Wireshark

▶ go-mysql

▶ TiDB

▶ MySQL

▶ DBD::mysql (Perl)

Why you should care about the MySQL Protocol

▶ Troubleshooting: protocol related bugs happen

▶ Performance: reduce roundtrips

▶ Cost: reduce bandwidth cost

▶ Contribute: add protocol support to new languages, tools, etc

Definitions & Scope

The MySQL Protocol is the protocol that is used between a client application and a
MySQL or MySQL Compatible server.

This is nowadays known as the ”Classic” protocol. There is also a ”X Protocol”, which
is newer and based on protobuf, but this is out of scope of this presentation.

The protocol can be used over a UNIX socket or over TCP.

Protocol information

The documentation for the protocol is made available by Oracle/MySQL on
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_
PROTOCOL.html and is using doxygen.

The MySQL Protocol does not have a formal specification. But it is documented. And
MySQL Server, Client, Connectors, etc can be seen as refrence implementations.

So when working with the protocol it is often useful to look at the documentation, but
often you have to look at network traces with tools like Wireshark as well. And in a
few cases it helps to look at the MySQL server and client source code.

https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_PROTOCOL.html
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_PROTOCOL.html

Who implements the protocol?

▶ MySQL Server

▶ TiDB

▶ Vitess (vtgate)

▶ MariaDB Server

▶ ProxySQL (including the admin
interface)

▶ MySQL Connector/J

▶ PHP with mysqlnd

▶ MySQL Connector/Python
▶ MySQL C API (libmysqlclient)

▶ MySQL Client
▶ DBD::mysql (Perl)
▶ mysqlclient (Python)

▶ Wireshark

▶ go-mysql (both client and server)

▶ go-sql-driver

▶ ClickHouse
... and much more ...

Using Wireshark with MySQL

Capture traffic and analyze

▶ Capture pcap file with tcpdump and analyze with Wireshark.

▶ Capture and analyze with Wireshark directly.

▶ Or use tshark (Wireshark CLI), especially with automation.

▶ Set -s 65535 with older tcpdump versions to capture complete packets.

Hints for the MySQL side

▶ Use -h 127.0.0.1, not localhost to avoid using a UNIX socket.

▶ Use --ssl-mode=DISABLED

▶ Use port 3306, or use Decode As . . . in Wireshark to set the protocol

▶ Use mysql as display filter to hide TCP info.

▶ Start capturing from the beginning of the connection to allow Wireshark to see
what protocol features are in use.

W
iresh

ark

Connection Setup

Who sends the first message?
With HTTP the client sends the first message. With MySQL the server sends the first
message.

Versioning
The Classic protocol has versions: V9 and V10. And V10 is used since MySQL 3.21.0
(1998). So basically the version number is useless.
The MySQL protocol instead uses capability flags to indicate features.

Handshake

Client Server

GET

HTTP Response

HTTP/1.1 Handshake

Handshake

Client Server
Handshake

Handshake Response

extra auth (optional)

OK

command mode

MySQL Handshake The TCP connection is established by the
client, but it is the server that sends the
first message.

This is more complicated than HTTP
because it does include authentication.

In case of authentication failure ERR is
returend instead of OK and the connection
is closed.

Handshake

HandshakeV10 (a.k.a. Server Greeting)
This contains:

1. Server Version (string)

2. Connection ID

3. Capability flags (4 bytes)

4. Authentication Scramble

Capabilities

CLIENT_LONG_PASSWORD
CLIENT_FOUND_ROWS
CLIENT_LONG_FLAG
CLIENT_CONNECT_WITH_DB
CLIENT_NO_SCHEMA
CLIENT_COMPRESS
CLIENT_ODBC
CLIENT_LOCAL_FILES
CLIENT_IGNORE_SPACE
CLIENT_PROTOCOL_41
CLIENT_INTERACTIVE
CLIENT_SSL
CLIENT_IGNORE_SIGPIPE
CLIENT_TRANSACTIONS
CLIENT_RESERVED
CLIENT_RESERVED2
CLIENT_MULTI_STATEMENTS

CLIENT_MULTI_RESULTS
CLIENT_PS_MULTI_RESULTS
CLIENT_PLUGIN_AUTH
CLIENT_CONNECT_ATTRS
CLIENT_PLUGIN_AUTH_LENENC_CLIENT_DATA
CLIENT_CAN_HANDLE_EXPIRED_PASSWORDS
CLIENT_SESSION_TRACK
CLIENT_DEPRECATE_EOF
CLIENT_OPTIONAL_RESULTSET_METADATA
CLIENT_ZSTD_COMPRESSION_ALGORITHM
CLIENT_QUERY_ATTRIBUTES
CLIENT_CAPABILITY_EXTENSION
CLIENT_SSL_VERIFY_SERVER_CERT
CLIENT_REMEMBER_OPTIONS
CLIENT_MULTI_QUERIES

S
erver

G
reetin

g

C
a
p
a
b
ilies

Handshake Response

HandshakeResponse41 (a.k.a. Client Login)
This contains:

1. username

2. authentication data

3. database (if CLIENT CONNECT WITH DB is set)

4. collation

5. max packet size

6. client plugin (if CLIENT PLUGIN AUTH is set)

7. Connection Attributes

Connection attributes

Connection Attributes are key-value pairs that the client sends to the server.
Some are set by connectors, some are set by applications.

Connection attributes

There is a performance schema table that shows these.

mysql> TABLE performance_schema.session_connect_attrs;
+----------------+-----------------+------------+------------------+
| PROCESSLIST_ID | ATTR_NAME | ATTR_VALUE | ORDINAL_POSITION |
+----------------+-----------------+------------+------------------+
27	_pid	360214	0
27	_platform	x86_64	1
27	_os	Linux	2
27	_client_name	libmysql	3
27	os_user	dvaneeden	4
27	_client_version	9.1.0	5
27	program_name	mysql	6
+----------------+-----------------+------------+------------------+
7 rows in set (0.01 sec)

L
o
g
in

TLS

Client Server
Handshake

Handshake Response

switch to TLS

Handshake
Handshake Response

extra auth (optional)

OK

command mode

MySQL Handshake with TLS With HTTP and HTTPS the server listens
on two ports (80 and 443) and port 443
directly starts the TLS negotiation.

With MySQL both secure (TLS) and
insecure connections use the same port
(3306). The connection always starts
without TLS and then switches to TLS if
both client and server have CLIENT SSL
set.

OpenSSL knows how to do this if you use
openssl s client -connect
127.0.0.1:3306 -starttls
mysql.

Wireshark and TLS

Did you know Wireshark can decode TLS traffic if you give it the private key and
select a suitable ciphersuite?

Some ciphersuites use Diffie-Hellman key exchange to get a session key, this requires
export of the session key if you want to decode the traffic.

Compression

zlib based compression has been in the protocol since MySQL 3.22.3.
zstandard based compression was added in 8.0.18.
Protocol flags:

▶ CLIENT_COMPRESS

▶ CLIENT_ZSTD_COMPRESSION_ALGORITHM

The HandshakeResponse41 contains the zstd compression level if the flag is set.

zlib or zstd?
$ mysql -u root -h 127.0.0.1 --compression-algorithms=zstd \
> -e "SHOW STATUS LIKE ’Compression_algorithm’"
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Compression_algorithm | zstd |
+-----------------------+-------+

$ mysql -u root -h 127.0.0.1 --compression-algorithms=zlib \
> -e "SHOW STATUS LIKE ’Compression_algorithm’"
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Compression_algorithm | zlib |
+-----------------------+-------+

$ mysql -u root -h 127.0.0.1 --compression-algorithms=zlib,zstd \
> -e "SHOW STATUS LIKE ’Compression_algorithm’"
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Compression_algorithm | zlib |
+-----------------------+-------+

$ mysql -u root -h 127.0.0.1 --compression-algorithms=zstd,zlib \
> -e "SHOW STATUS LIKE ’Compression_algorithm’"
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Compression_algorithm | zlib |
+-----------------------+-------+

Compression Details

Regular MySQL Packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

length sequence

payload

Compressed MySQL Packet:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

compressed length c. seq

uncompressed length

compressed payload

Payload is not compressed if
uncompressed length is set to 0.
Compression is done per packet.

Some operations may be split into
multiple packets.

C
o
m
p
ressio

n

C
o
m
p
ressio

n

Authentication

▶ The server sends a default authentication method in the Server Greeting.

▶ The client then may then use this or any other method to authenticate.

▶ Then the server sends a AuthSwitch back if the account needs a different auth
method.

▶ Eventually the response is a OK packet or ERR packet.

▶ Authentication methods are free to add extra roundtrips.

Note that mysql does do authentication based on accounts, this is the combination of
username and host. So user@somehost is a different account to user@otherhost and
can have a different password, permissions, etc.

Authentication

When migrating to a newer authentication method the server announced default and
the client default might be wrong for a specific account. This increases the
AuthSwitch roundtrips. Especially for Perl, PHP, etc this might be costly as they tend
not to use persistent connections.

mysql old password

Default prior to MySQL 4.1.
Deprecated in MySQL 5.6.
16 byte hash.
The secure auth setting was used to
disable this.
The scramble, which is a hash of the
password which is then XORed with the
salt from the server, makes it ”safe” to use
this on an insecure connection. This
doesn’t protect statements later on that
might include the password or password
hash.
As the hashes are stored unsalted, this
allows the use of rainbow tables.

Client Server

Server Greeting with 8-byte salt

Scrambled password

mysql old password

mysql native password

Introduced in MySQL 4.1 as default.
Deprecated as of MySQL 8.0.34.
Removed in MySQL 9.0.
Uses SHA1 hashes (standardised, 160-bit
(20 byte))
Server stores salted hashes.

Client Server

Server Greeting with 20-byte salt

salted and hashed password

mysql native password

N
a
tive

A
u
th

N
a
tive

A
u
th

N
a
tive

A
u
th

N
a
tive

A
u
th

sha256 password

Uses SHA-256 (part of SHA2 family).
Uses a 256-bit (32-byte) hash.
Requires TLS or a RSA keypair to keep the
password secure during authentication.
Deprecated as of MySQL 8.0.16.

Client Server

Server Greeting with CLIENT SSL

Login, with CLIENT SSL

TLS establishment

Server Greeting

plaintext password

sha256 password with TLS

RSA keypair

Automatically generated.
How to distribute the public keys of your server to the clients securely is up to the user.
So is key rollover, etc.
Only protects the authentication part of the connection.
There is the --get-server-public-key option to request the public key over a
MySQL connection. But this connection is not secure and open to a
man-in-the-middle attack.
A TOFU (Trust On First Use) would have somewhat improved this.
No hostname validation.
TLS takes care of all of this.

MySQL and TLS

▶ MySQL never supported SSLv2 or SSLv3

▶ In most cases SSL doesn’t mean SSL, it means TLS. . .

▶ MySQL used to have YaSSL or OpenSSL, now it only has OpenSSL.

▶ YaSSL didn’t support TLSv1.2 an was slower than OpenSSL

▶ OpenSSL and GPL didn’t mix well.

▶ MySQL doesn’t do hostname validation (--ssl-mode=VALIDATE IDENTITY)
by default.

▶ MySQL doesn’t do CA validation (--ssl-mode=VALIDATE CA)by default
either.

▶ The default doesn’t protect against man-in-the-middle attacks.

▶ Both caching sha2 password and sha256 password send the plaintext
password over the TLS connection.

▶ So by default MySQL clients/connectors will happily send the password to the
man in the middle. . .

caching sha2 password

Uses SHA-256 (part of SHA2 family).
Uses a 256-bit (32-byte) hash.
Requires TLS or a RSA keypair to keep the password secure during authentication.
Has these authentication paths:

▶ Quick: When the password is empty.

▶ Fast: Validate the (cached) scramble.

▶ Full: No cached scramble. Requires TLS or RSA keypair.

C
a
ch

in
g
S
H
A
2
P
a
ssw

o
rd

auth socket

Only supports UNIX domain sockets, so no TCP connections.
Uses SO PEERCRED to get the username of the other side of the socket.
Relies on OS authentication.
Usually the MySQL username and UNIX username should match. But does support
mapping.

Multi Factor Authentication

AuthNextFactor packets are sent by the server after each method.

mysql clear password

Only a client-side plugin.
Useful with PAM and simple LDAP authentiction.

Queries & resultsets

▶ Text Protocol: COM QUERY

▶ Binary Protocol: Prepared statements

COM QUERY

COM_QUERY
<query>

COM QUERY, with Query Attributes
COM_QUERY
if QUERY_ATTRIBUTES {

<parameter_count>
<parameter_set_count> // always 1
if parameter_count > 0 {

<null_bitmap>
<new_params_bind_flag> // always 1
if new_params_bind_flag >0 {

for each param {
<param_type>
<param_flag>
<parameter_name>

}
for each param {

<param_value>
}

}
}

}
<query>

Query Attributes

import mysql.connector

c = mysql.connector.connect(
host=’127.0.0.1’,
user=’root’,
ssl_disabled=True,

)

cur = c.cursor()

cur.add attribute("proxy user", "myuser")

cur.execute(
"SELECT %s, mysql_query_attribute_string(’proxy_user’)",
("hello",)

)
for row in cur:

print(row) # Output: (’hello’, ’myuser’)
cur.close()

c.close()

Q
u
ery

Resultsets

Result is one of these:

▶ ERR-packet

▶ OK-packet

▶ LOCAL INFILE request

▶ Text resultset

Text Resultset

▶ Field count

▶ List of fields

▶ Intermediate EOF

▶ List of rows

R
esu

ltset

R
esu

ltset

Prepared statements

▶ Prepare: Just COM STMT PREPARE with the query.

▶ Response: Metadata about number of parameters, etc

▶ Execute: COM STMT EXECUTE with the ID of the prepare and a list of
parameters.

Note that some drivers might do a client side prepare emulation to avoid the roundtrip.

Prepared Statements

#!/bin/perl
use v5.40;
use DBI;

my $dsn = ’dbi:mysql:host=127.0.0.1;mysql_server_prepare=false’;
my $dbh = DBI->connect($dsn, ’root’, ’’);
my $sth = $dbh->prepare("SELECT ?, ?, ’foobar’");
$sth->execute(123, "one-two-three");

$sth->bind_param(1, 456);
$sth->bind_param(2, "four-five-six");
$sth->execute;

$sth->finish;
$dbh->disconnect;

P
rep

ared
S
ta
tem

en
ts

P
rep

ared
S
ta
tem

en
ts

P
rep

ared
S
ta
tem

en
ts

P
rep

ared
S
ta
tem

en
ts

Replication

▶ Connection setup as usual

▶ Optional: COM REGISTER REPLICA to register the relica
(for SHOW REPLICAS)

▶ COM BINLOG DUMP or COM BINLOG DUMP GTID to start binlog stream.

▶ binlog stream is mostly identical to the binlog files on disk

▶ binlog stream consistes of a series of events.

R
ep

lica
tio

n

Clone

▶ Clones the data files of a MySQL instance

▶ Uses multiple connections

C
lo
n
e

C
lo
n
e

Query Cache & DEPRECATE EOF

The (now removed) Query Cache in MySQL did not cache queries.

The Query Cache cached network packets with results. The query matching was very
simple. Different case? Different comment? Different query!

The DEPRECATE EOF flag changed how result packets looked like. This flag is per
connection. The cache lookup didn’t check if the connection was using the same
setting for this flag.

The results that were cached were not respecting the setting of this flag and didn’t
properly follow the protocol.

https://bugs.mysql.com/bug.php?id=83346

https://bugs.mysql.com/bug.php?id=83346

Questions?

Thank you!

Daniel.van.Eeden@pingcap.com

https://gitlab.com/wireshark/wireshark/
https://www.wireshark.org/
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_PROTOCOL.html

https://gitlab.com/wireshark/wireshark/
https://www.wireshark.org/
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_PROTOCOL.html

	Introduction
	Connection Setup
	Handshake
	TLS & Compression
	Authentication

	Command Phase
	Queries & resultsets
	Prepared statements

	Replication
	Bugs
	Q&A

