
The Patient Brush:

How to Clean up a 16 Year Old Linux Kernel API

Philipp Stanner
Kernel Engineer for GPUs @ Red Hat

OFTC: phasta
phasta@kernel.org

2

Obligatory Disclaimer

● This talk criticizes old *code*
● We don’t condemn its *authors*
● “As a software developer, at first you think the others can’t

code; ultimately you realize that no one can.”
– Anonymous former colleague of mine

3

The PCI Subsystem

● PCIe:
– Most important bus on your computer
– Quite old now (>20 years)

● Subsystem:
– Currently has 1 full time maintainer
– Has 2-3 problematic APIs (potential overflows / leaks) that I know of

4

PCI in a Nutshell

PCI Device

BAR 0

BAR 1

...

Virtual
Address Space

IO-Mapping

ioremap

ioremap functions:
● pci_iomap()
● pcim_iomap_regions()
● …

5

The Good Ol’ API (1)

void __iomem * const *pcim_iomap_table(struct pci_dev *pdev);

● Function in the PCI-Subsystem
● Written in ~2007-2009
● This function does… ahm… it… io-remaps a PCI device? And the iomem is

const, isn’t it?

 ⇒ I don’t get its purpose let’s look for users!⇒

6

The Good Ol’ API (2)

ret = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
if (ret) {

dev_err(&pdev->dev, "I/O memory remapping failed\n");
return ret;

}

ioaddr = pcim_iomap_table(pdev)[0];

● Ahm… OK…
● First request (i.e., reserve) and

ioremap a BAR (“region”)
● Specify which BAR through a

bitmask
● Then get the mapping addr

through the table function
● … by indexing “over the

function” ò_ó

7

API-Designer’s Intention

ret = pcim_iomap_regions(pdev, 1 << 0 | 1 << 2, pci_name(pdev));
if (ret)

return ret;

ioaddr = pcim_iomap_table(pdev)[0];
● Original intention:

Allow requesting multiple BARs
with one call through bitmask

● C functions have (almost) no
way to return multiple pointers

 ⇒ table-function to access those
IO-Mapping-Table

pcim_iomap_regions(pdev,
1 << 0 | 1 << 2, …); pcim_iomap_table(…)[0];

BAR 0

IO-Addr (to driver)

BAR 2

8

API Problems – Overflows / UB

ret = pcim_iomap_regions(pdev, 1 << 0, pci_name(pdev));
if (ret) {

dev_err(&pdev->dev, "I/O memory remapping failed\n");
return ret;

}

 ioaddr = pcim_iomap_table(pdev)[42 * 9001]; // overflow!

● table-function-index can’t be
bounds-checked

● PCI devices currently have at
most 6 BARs

● bitmask is an int (32 bits), so not
that extensible anyways

9

API Problems – Hackyness

rc = pcim_iomap_regions(pdev, 0x3 << base,
dev_driver_string(gdev)); ● 0x3 = 0b11 = “first two BARs”

● Or maybe not, depends on base
● Some APIs encourage hackyness :)

From: drivers/ata/libata-sff.c

10

How is it actually being used?

● Let’s search for users in the kernel
● Search result:

– 131 users (in early 2024)

– Almost all request 1 BAR, setting 1 bit in the bitmask
● Conclusion:

– API is overengineered
– We want: pcim_iomap_region(pdev, bar_index, …)

11

Replacing the old API

● Obstacles:
– Hundreds of users
– Dozens of drivers / subsystems many maintainers involved→
– Patches are typically merged per subsystem
– You need a review / ack for each driver

 ⇒ Replacing the API at once is impossible
(Side note: Kernel development is not only tech, but a lot of “politics”)

12

Pre-solution state

pcim_iomap_regions()

A B C D E

pcim_iomap_table()[x]

Drivers

Table-entries

13

Solution – Step 1: Create a simpler alternative

pcim_iomap_regions()

A B C D E

pcim_iomap_table()

Drivers

Table-entries

pcim_iomap_region()

IO-Addr

14

Solution – Step 2: Port first users

pcim_iomap_regions()

A B C D E

pcim_iomap_table()

Drivers

Table-entries

pcim_iomap_region()

IO-Addr

Marked as
deprecated

F New driver

15

Solution – Step 3: Success! (after years ^^)

A B C D EDrivers

pcim_iomap_region()

F

16

Contributing

● You’d like to get some commits into the kernel?
● Try this guide:

1) Browse code you’re interested in
2) If something looks broken, it likely is!

(Tip: use git blame to grasp the code’s background)

3) Try to repair it
4) Never hesitate to ask on-list. It’s the maintainer’s duty to guide you
5) Success \o/

17

Happy Hacking!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

