
bpftrace: a path to the ultimate
Linux tracing tool
FOSDEM 2025
Viktor Malík

Red Hat

Feb 1, 2025

1 / 19

Introduction

• Who am I?
• Viktor Malík <vmalik@redhat.com>
• Principal Software Engineer at Red Hat, Core Kernel Engineering
• Upstream co-maintainer of bpftrace

• What am I doing here?
• Introduce bpftrace as a tracing tool and language
• Show what bpftrace can do for you
• Tease what bpftrace could do for you in future

2 / 19

bpftrace introduction

3 / 19

bpftrace
Quick introduction

• Tracing tool for Linux based on eBPF

• Comes with a domain-specific laguage, bpfscript

• Basic workflow:

fentry:vfs_read {
@ = hist(args.count)

}

0: (79) r2 = *(u64 *)(r1 +16)
1: (b7) r0 = 0
2: (6d) if r0 s> r2 goto pc+37
3: (b7) r0 = 1
4: (15) if r2 == 0x0 goto pc+35
5: (b7) r1 = 1
6: (18) r4 = 0xffffffff
[...]

BPF bytecodebpfscript program

compile

vfs_read

kernel hook

BPF program
load

attach

bpftrace runtime

4 / 19

bpftrace
Quick introduction

• Tracing tool for Linux based on eBPF

• Comes with a domain-specific laguage, bpfscript

• Basic workflow:

fentry:vfs_read {
@ = hist(args.count)

}

0: (79) r2 = *(u64 *)(r1 +16)
1: (b7) r0 = 0
2: (6d) if r0 s> r2 goto pc+37
3: (b7) r0 = 1
4: (15) if r2 == 0x0 goto pc+35
5: (b7) r1 = 1
6: (18) r4 = 0xffffffff
[...]

BPF bytecodebpfscript program

compile

vfs_read

kernel hook

BPF program
load

attach

bpftrace runtime4 / 19

bpfscript
Language overview

• Main building block is a probe

• Probes have 2 main parts:

fentry:vfs_read

{
@ = hist(args.count)

}

attach point

action block

• Main action block constructs:
• Variables
• Operators (arithmetic, logic, bitwise, struct/array member access, …)
• Control-flow statements (conditionals, loops)
• Built-in variables and functions

5 / 19

bpfscript
Language overview

• Main building block is a probe

• Probes have 2 main parts:

fentry:vfs_read

{
@ = hist(args.count)

}

attach point

action block

• Main action block constructs:
• Variables
• Operators (arithmetic, logic, bitwise, struct/array member access, …)
• Control-flow statements (conditionals, loops)
• Built-in variables and functions

5 / 19

bpfscript
Language overview

• Main building block is a probe

• Probes have 2 main parts:

fentry:vfs_read

{
@ = hist(args.count)

}

attach point

action block

• Main action block constructs:
• Variables
• Operators (arithmetic, logic, bitwise, struct/array member access, …)
• Control-flow statements (conditionals, loops)
• Built-in variables and functions

5 / 19

bpfscript
Language overview

• Main building block is a probe

• Probes have 2 main parts:

fentry:vfs_read

{
@ = hist(args.count)

}

attach point

action block

• Main action block constructs:
• Variables
• Operators (arithmetic, logic, bitwise, struct/array member access, …)
• Control-flow statements (conditionals, loops)
• Built-in variables and functions5 / 19

bpfscript
Variables

• bpftrace provides two kinds of variables:
• Scratch variables

• Block-scoped (valid only inside the current lexical block)
• Example: $x = cpu

• Maps
• Key-value pairs
• Globally-scoped (each map is available from all probes)
• Implemented using BPF hash maps
• Example: @start[pid] = nsecs

6 / 19

bpfscript
Built-ins

• Built-ins are special variables and functions built into the language.

• Provide various functionalities such as access to kernel data, type conversions, printing, string
manipulation, etc.

7 / 19

bpftrace strengths

8 / 19

bpftrace strengths
One-liners

• The terseness of the language allows to write powerful one-liner scripts that can be tailored to
user’s immediate needs.

• Great for on-the-fly debugging of production systems.

• Example: list files opened by thread name

t:syscalls:sys_enter_open { printf("%s %s\n", comm, str(args.filename)) }

9 / 19

bpftrace strengths
One-liners

• The terseness of the language allows to write powerful one-liner scripts that can be tailored to
user’s immediate needs.

• Great for on-the-fly debugging of production systems.

• Example: list files opened by thread name

t:syscalls:sys_enter_open { printf("%s %s\n", comm, str(args.filename)) }

9 / 19

bpftrace strengths
Abstraction from BPF

• BPF has many powerful features but sometimes requires significant expertise to be used.
• bpftrace tries to eliminate this by abstracting the implementation details away from the user.
• This makes bpftrace a great choice as the entry point to the BPF world.

• Example:
• BPF stack is only 512B so it is often necessary to offload values to BPF maps or global variables.
• Creating maps in BPF is not entirely easy:

struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 1);
__type(key, u32);
__type(value, pid_t);

} my_map SEC(".maps");

• bpftrace will automatically offload large scratch variables to maps

10 / 19

bpftrace strengths
Abstraction from BPF

• BPF has many powerful features but sometimes requires significant expertise to be used.
• bpftrace tries to eliminate this by abstracting the implementation details away from the user.
• This makes bpftrace a great choice as the entry point to the BPF world.
• Example:

• BPF stack is only 512B so it is often necessary to offload values to BPF maps or global variables.
• Creating maps in BPF is not entirely easy:

struct {
__uint(type, BPF_MAP_TYPE_ARRAY);
__uint(max_entries, 1);
__type(key, u32);
__type(value, pid_t);

} my_map SEC(".maps");

• bpftrace will automatically offload large scratch variables to maps
10 / 19

bpftrace weak spots

11 / 19

bpftrace weak spots

• BPF feature completeness
• A number of BPF features is not exposed via bpftrace/bpfscript.
• Missing are some helpers, pretty much all the kfuncs, map types, CO-RE, …

• Complex scripts
• bpftrace has traditionally been targeting one-liners.
• Writing and maintaining larger scripts is often painful due to the lack of features – CLI options,

functions (subprograms), …

12 / 19

bpftrace weak spots

• BPF feature completeness
• A number of BPF features is not exposed via bpftrace/bpfscript.
• Missing are some helpers, pretty much all the kfuncs, map types, CO-RE, …

• Complex scripts
• bpftrace has traditionally been targeting one-liners.
• Writing and maintaining larger scripts is often painful due to the lack of features – CLI options,

functions (subprograms), …

12 / 19

bpftrace weak spots

• Tracing capabilities
• Some events and environments are notoriously hard to trace
• Examples:

• inlined functions (both in kernel and userspace)
• running the tracer in containers/namespaces

• These problems are not specific to bpftrace

13 / 19

Recent, ongoing, and future work

14 / 19

Recent, ongoing, and future work
Better tracing capabilities

• Tracing inlined functions
• Using lldb to resolve all locations of a function entry (including inlined) from DWARF
• This also allows to place a probe after the function prologue (when the stack frame has been

established) which will prevent missing entries when collecting stacks.

• Running bpftrace inside a container with PID namespacing
• In a PID namespace, pid, tid, and ustack do not work correctly
• Wemust switch between different helpers (bpf_get_current_pid_tgid,
bpf_get_ns_current_pid_tgid) depending on where bpftrace and the traced process
are running.

• Still not working for the case when bpftrace is in a child namespace while the target is in the root
namespace.

15 / 19

Recent, ongoing, and future work
Better tracing capabilities

• Tracing inlined functions
• Using lldb to resolve all locations of a function entry (including inlined) from DWARF
• This also allows to place a probe after the function prologue (when the stack frame has been

established) which will prevent missing entries when collecting stacks.

• Running bpftrace inside a container with PID namespacing
• In a PID namespace, pid, tid, and ustack do not work correctly
• Wemust switch between different helpers (bpf_get_current_pid_tgid,
bpf_get_ns_current_pid_tgid) depending on where bpftrace and the traced process
are running.

• Still not working for the case when bpftrace is in a child namespace while the target is in the root
namespace.

15 / 19

Recent, ongoing, and future work
Variable/map declarations

• Automatic type inference is good for one-liners but can make scripts harder to maintain.
• Sometimes it is necessary to specify the variable type, especially for maps.

• Scratch variable declarations:
let $x: uint8;
$x = 0;

• Map declarations (not yet implemented):
let @hash = Hash<uint32, int64>;
@hash[pid] = nsecs;

let @array = Array<int64>;
@array[0] = 100;

16 / 19

Recent, ongoing, and future work
Variable/map declarations

• Automatic type inference is good for one-liners but can make scripts harder to maintain.
• Sometimes it is necessary to specify the variable type, especially for maps.

• Scratch variable declarations:
let $x: uint8;
$x = 0;

• Map declarations (not yet implemented):
let @hash = Hash<uint32, int64>;
@hash[pid] = nsecs;

let @array = Array<int64>;
@array[0] = 100;

16 / 19

Recent, ongoing, and future work
Variable/map declarations

• Automatic type inference is good for one-liners but can make scripts harder to maintain.
• Sometimes it is necessary to specify the variable type, especially for maps.

• Scratch variable declarations:
let $x: uint8;
$x = 0;

• Map declarations (not yet implemented):
let @hash = Hash<uint32, int64>;
@hash[pid] = nsecs;

let @array = Array<int64>;
@array[0] = 100;

16 / 19

Recent, ongoing, and future work
Functions

• Migration to libbpf enabled usage of BPF subprograms.
• In future, bpftrace should support calling 2 new kinds of functions:

• Defined in bpfscript:

fn sum(a: int64, b: int64): int64 {
return $a + $b;

}

• Imported from external BPF programs/libraries
• Useful e.g. for external stack walkers for Python

• Eventually, these should enable creating a bpftrace standard library
17 / 19

Recent, ongoing, and future work
Command line options

• Large scripts/tools intended for frequent reuse usually require configuration options.

• We introduce a new opts builtin which allows the script to define its options.
opts = [{
type=int,
short="i",
long="interval",
desc="Interval in seconds"

}]

interval:s:opts.interval {
print(...)

}
18 / 19

Summary
• bpftrace is a powerful tool for tracing Linux systems which allows to leverage BPF without the

need to understand its technicalities.

• There is a lot of active development to overcome the existing limitations and support creating
and maintaining complex tools.

• Visit our new website! https://bpftrace.org

• Do you have questions? Ideas for features? Did you find bugs?
→ reach out via https://github.com/bpftrace/bpftrace/

Thank you for the attention!

19 / 19

https://bpftrace.org
https://github.com/bpftrace/bpftrace/

Summary
• bpftrace is a powerful tool for tracing Linux systems which allows to leverage BPF without the

need to understand its technicalities.

• There is a lot of active development to overcome the existing limitations and support creating
and maintaining complex tools.

• Visit our new website! https://bpftrace.org

• Do you have questions? Ideas for features? Did you find bugs?
→ reach out via https://github.com/bpftrace/bpftrace/

Thank you for the attention!

19 / 19

https://bpftrace.org
https://github.com/bpftrace/bpftrace/

Summary
• bpftrace is a powerful tool for tracing Linux systems which allows to leverage BPF without the

need to understand its technicalities.

• There is a lot of active development to overcome the existing limitations and support creating
and maintaining complex tools.

• Visit our new website! https://bpftrace.org

• Do you have questions? Ideas for features? Did you find bugs?
→ reach out via https://github.com/bpftrace/bpftrace/

Thank you for the attention!
19 / 19

https://bpftrace.org
https://github.com/bpftrace/bpftrace/

	bpftrace introduction
	bpftrace strengths
	bpftrace weak spots
	Recent, ongoing, and future work

