
CONVERTING AN 07 CAR TO A
REMOTE CONTROLLED EV USING

OPEN SOURCE SOFTWARE

Marc Lainez

2013:

	 2016-2023: Ibanity (Sold it in 2017)

	 	 2024: Taking a sabbatical break, playing with cars…

Marc Loïc Thibault

The team

Why?
The transport industry is rather
siloed and closed

The software reliability and
safety of vehicles is rather
“opaque” and not necessarily
reassuring

There is no real “aftermarket
software” for cars

Parts from different brands do
not work together, too much
vendor lock-in

What does it mean to “upgrade” a vehicle?

• Bringing it on par with environmental requirements
• Engine swap
• EV Retrofit

• Adding the features we expect in today’s cars
• Infotainment system
• Assisted driving/autonomous driving
• Remote control

Small disclaimer

NONE OF WHAT YOU
WILL SEE IS ROAD
CERTIFIED 😱

Why not try to upgrade a 2007 Polo
using only open source software ?

The donor car…

2007 Polo Bluemotion

What upgrades have we done to it?
Hardware and Software work

•Add a custom made infotainment touchscreen
•Create the interface for the Nissan motor

(ignition, throttle, RPMs, gear selector, …)
•Control the steering pump independently
•Create the interface with the battery

management system and charger (wip)
•Build new brains for the car in order to make all

new parts communicate together
•Create Mavlink bridge
•Create ROS2 bridge (wip)
•Build basic perception layer for future

autonomous experiments (wip)
•…

Mechanical work

•Renovate both drivetrain
•Change brake pads
•Modify body and chassis to support the new

motor and battery packs
•Install Nissan Leaf motor and fabricate

connection pieces
•Swap the brake system with a Tesla iBooster

module
•Install a modified steering column
•3D printed countless pieces
•Add (many) new wires…
•…

What does it look like now?

All thanks to open source projects ❤
Elixir

All non-arduino
components

Nerves
Firmware builder based on buildroot

All non-arduino components

Flutter
Frontend embedded

Infotainment

Vue.js
Frontend web

VMS

Phoenix
Backend API

VMS + Infotainment

Why Elixir

• Dynamic, functional language
running on the BEAM (Erlang
VM)
• Made to build scalable and

highly available systems
• Uses pattern matching, making

parsing bytes or messages
quite straightforward

Why Nerves

• Quickly build firmware based on buildroot
• Boots straight into the Beam (Erlang VM)
• Packages Elixir code and runs it on several off-the-shelves

boards
• Deals with partition redundancy, OTA updates, and all the

firmware development/deployment cycle
• Leverages the power and flexibility of buildroot

https://nerves-project.org/

Understanding the car’s
language

CAN communication bus
CAN bus (Controller Area Network)
is where all car components talk
together

Standard protocol in automotive,
aeronautics, industrial machinery, …

Although CAN is standard, the
messages you transfer through it are
not

Data exchanged on CAN is
represented as a series of
bytes

A “frame” with a specific ID
is published periodically on
the CAN

CAN communication bus

https://github.com/commaai/opendbc

Cantastic

• Building our own (open
source) Elixir CAN library
• On top of Erlang sockets
• Uses yaml instead of dbc

files
• Takes advantage of the

functional power of Elixir

https://github.com/open-vehicle-control-system/cantastic

Inverter

Vehicle
Management

System

Motor Charger

Controls
Controller

Front
Controller

Infotainment

Battery
Management

System

Anti-lock Braking
System

Dashboard

Ignition Lock

Doors

M
isc

 C
A

N

O
VC

S
C

A
N

V
W

 P
ol

o
C

A
N

Nissan Leaf CAN

OVCS components
OEM components

Steering pump

Brake booster

O
rio

n
C

A
N

Getting the leaf motor to spin

Reverse engineering the Leaf motor

We needed to find the right CAN
messages to power up the motor

We used DBC files we could find
online to figure them out

Information found mostly on auto
enthusiast forums and by observing
the CAN

Using the Polo gas pedal to
control the motor

Connecting the pedal to the CAN
The pedal is a simple potentiometer (2
actually…)

You can see two signals, one is used to
give the pedal position and the other
one is a control value

We connected it to an arduino with a
CAN module over SPI

Deal with motor contactors
Several relays need to be activated in
a specific order

Adding relays to arduino was quite
straightforward

The arduinos are connected to the
CAN network with CAN SPI modules

The first “end-to-end” prototype

Vehicle Management
System

Car controls controller

Contactors controller

Putting the motor in the Polo

New motor support welded Connection plates CNC’d and
welded

Custom junction piece to connect the
motor to the gearbox

3D printing

Iterating on the “plank” prototype

VMS (x1)
RPI4

Custom SPI hat
5xMCP2517FD

Generic controller (x3)
Arduino R4 Minima

Custom SPI hat
MCP2517FD

OVCS Canhub (x3)

(Just cables 😄)

VMS in more details

Dynamic Web frontend in Vue.js

Backend Core and API in Elixir + Phoenix

Nerves running the Erlang VM

Buildroot

VMS vehicle configuration

Vehicle composer Dashboard composer

The car’s new “brains”

Generic controller in more details
OVCS Function Physical Pin OVCS Pin

UART Receive D0
UART Transmit D1
Adopt bu8on D2
SPI CAN Int D3
Digital D4 0
So@ware PWM D5 0
So@ware PWM D6 1
Digital D7 1
Digital D8 2
So@ware PWM D9 2
SPI CAN CS D10
SPI CAN COPI D11
SPI CAN CIPO D12
SPI CAN SCK D13
DAC A0 0
Analog In A1 0
Analog In A2 1
Analog In A3 2
I2C SDA - MOSFET A4
I2C SCL - MOSFET A5
Digital MOSFET0-0 -> 7 3 -> 10
Digital MOSFET1-0 -> 7 11 -> 18
Hardware PWM PiC32 over UART 0 -> 3

All controllers run the same code on Arduinos now (we
dropped the specific controller code)

Their function is determined by the VMS during adoption

A button on the controller makes it go into adoption
mode

VMS Controller

Send adoption
frame

Listen for
adoption frame

Store configuration
Stop sending

adoption
frame

OVCS CAN

The infotainment

Gives information and
diagnostics about car
features

Replaces the gear selector
(PRND)

Built on top of Nerves +
flutterpi

Placing the components in the car

Adapting the car

Changing the servo-brakes
The polo had a servo-brake that used
the depression from the thermal
engine to provide brake assistance

Tesla’s “brake boosters” are popular
in old car renovations

We simply installed a gen2 Tesla
iBooster to solve this issue

Controlling the steering hydraulic pump
The pump starts when the thermal
engine is started

It knows it’s started when the RPMs
on the CAN are the “idle RPM” of the
thermal engine…

We are controlling it separately
through the VMS by faking the engine
presence and RPM

Building the battery from used cells ☠

What if we transformed our Polo EV
into an RC and autonomous vehicle?

Controlling the Polo

Acceleration 🚗 ✅

Braking 🚗 🤔

Steering 🚘 🤨

Braking
Tesla’s brake boosters can be
controlled via CAN

The CAN messages allow to control
the rate of fluid going through the
booster

From gen1 DBC files and some CAN
traces we found, we were able to
reverse the right CAN messages

https://github.com/open-vehicle-control-system/dbc/tree/main/ibooster

Braking ✅

Steering
The original steering column is not
motorised

We tried reversing a 2019 Polo
steering column (2Q1909144) with
no success

We stripped the 2Q1 of it’s ECU
and motor and simply connected
another servo and angle sensor

Steering ✅

A Mavlink bridge for OVCS
“Micro Air Vehicle Link”, mostly used
in aerial drones

Also supports “rover” types of drones

Open protocol which can be
extended with our own messages

Supported by several controllers,
libraries and tools

RC control of OVCS1

What now?

OVCS Mini, because testing on a real size car
can be… dangerous… ☠

Same hw/sw stack as
the full size car

Also using CAN as a
communication bus

Will allow us to test
features in a safer way

A ROS2 bridge for OVCS (wip)

Robot Operating System

Using Rclex, an Elixir ROS2
client working with Nerves

No need to run Ubuntu 🎉, it
runs on Buildroot through
Nerves

=

+
+

+

Plumbing

ToolsCapabilities

Ecosystem

Perception stack (wip)

• Uses open source AI models
for object detection and
segmentation
• Sends detected bounding

boxes and classes through
ROS2 topics

The OVCS remote (wip)

Multi protocol remote
(Mavlink, ROS2, ?)

Allows us to test new features
that are not supported by off-
the-shelve transmitters

And… it’s just cool to build
one 😎

Small reminder

NONE OF THIS IS
ROAD CERTIFIED

Maybe one day…

https://github.com/open-vehicle-control-system

That’s it!
Any ideas, suggestions, questions?

info@spin42.com

