CONVERTING AN 07 TO A
USING

Marc Lainez



Loic Thibault

2013: 6% Spin42
2016-2023: Ibanity (Sold it in 2017)

2024: Taking a sabbatical break, playing with cars...



> e e e et e e

TSRS

,,,,,,,,, ki

S

X,

2 S G S O i
oSt S U » GBI GON G 4
A

TolL oy
- o i o !

>

7N A

;;;;;;;

.

R

._
o' oAV ¥

- /v:/\'/:>,\ \. <

PSS

e -
D020 02002029

The transport industry is rather
siloed and closed

The software reliability and
safety of vehicles is rather
“opaque” and not necessarily
reassuring

III

There is no real “aftermarket
software” for cars

Parts from different brands do
not work together, too much
vendor lock-in



What does it mean to a vehicle®

* Bringing it on par with environmental requirements
* Engine swap
* EV Retrofit
 Adding the features we expect in today’s cars
* Infotainment system
» Assisted driving/autonomous driving

 Remote control



Small disclaimer

NONE OF WHAT YOU
WILL SEE IS ROAD
CERTIFIED &




Why not try to
using only



The donor car...

wihar

(LT VR S

2007 Polo Bluemotion



What

work

* Renovate both drivetrain
* Change brake pads

* Modify body and chassis to support the new
motor and battery packs

* Install Nissan Leaf motor and fabricate
connection pieces

» Swap the brake system with a Tesla iBooster
module

* Install @ modified steering column
* 3D printed countless pieces

* Add (many) new wires...

have we done to it

and work

e Add a custom made infotainment touchscreen

* Create the interface for the Nissan motor
(ignition, throttle, RPMs, gear selector, ...)

* Control the steering pump independently

* Create the interface with the battery
management system and charger (wip)

* Build new brains for the car in order to make all
new parts communicate together

* Create Mavlink bridge
* Create ROS2 bridge (wip)

* Build basic perception layer for future
autonomous experiments (wip)



What does it look like now?




All thanks to open source projects %

74N
-

\ 4

Elixir
All non-arduino
components

Vue.js
Frontend web
VMS

Nerves
Firmware builder based on buildroot
All non-arduino components

/ Flutter
' Frontend embedded

Infotainment

Phoenix

Backend API
VMS + Infotainment



Why ( \

-

* Dynamic, functional language
running on the BEAM (Erlang

VM)
. <<id::little-integer-size(16),
* Made to build scalable and . :binary-size(2),

highly available systems o number
* Uses pattern matching, making I“f‘“ﬁggizi;;Eizagv-vsii:mzwe_number ,
parsing bytes or messages

quite straightforward

byte_number::little-integer-size(8),



Why

* Quickly build firmware based on buildroot
* Boots straight into the Beam (Erlang VM)

* Packages Elixir code and runs it on several off-the-shelves
boards

* Deals with partition redundancy, OTA updates, and all the
firmware development/deployment cycle

* Leverages the power and flexibility of buildroot

https://nerves-project.org/



the car’s



communication bus

/

CAN bus (Controller Area Network)

is where all car components talk
together

Standard protocol in automotive,
aeronautics, industrial machinery, ...

Although CAN is standard, the

messages you transfer through it are
not



communication bus

SO X

requenc ID |  Notch

Data exchanged on CAN is
represented as a series of oS ouooson unnetzh

...93hz 0x00101 .
..469 hz 0x00110 Mute notched bits

byfes 0..0hz  0x00111 Notch Interval
.0...245 hz 0x0011A FD ~
.0...0hz 0x001A0 00 750ms -
...239hz 0x001D4 - _
...0hz 0x001DA D5
...84hz 0x00200 .
"0 hz 0x00201 Expire Interval
.0...0hz 0x00280 00 5000ms
V7 ” ] ofe .0...0hz 0x00320 00
A frame Wll'h d speC|f|c |D 0..0hz  0x00388 Never Expire IDs
.0...0hz 0x0038A _
. bl. h d . d. ” .0... 0 hz 0x00390 86! Fade inactive bytes
.0...0hz 0x00393 35
IS pU IShe perlo ICa y on 0..0hz  0x00420 00 View Bits
.0...0hz 0x00470
the CAN .0...0hz 0X004A0 00 Filters:
.0...0hz 0x0050B

...0hz 0x00520 03 v OxQ -~
...0hz 0x0055A E8 v 0x1
...0hz 0x00570 v 0x1
...0hz 0x005A0 2B v 0x1
...0hz 0x005D0 v 0x1
...0hz 0x005D8 00 v 0x1
...0hz 0x005E0 00 v 0x1
..0hz 0x00600 :/ 0)(}1 b

https://github.com/commaai/opendbc All one




* Building our own (open
source) Elixir CAN library

* On top of Erlang sockets

* Uses yaml instead of dbc
files

* Takes advantage of the
functional power of Elixir

name: wheels_speed
id: Ox4A0
signals:
- name: front_left_wheel_speed

unit: km/h

value_start: 0
value_length: 16

scale: "0.005836"

name: front_right_wheel_speed
unit: km/h

value_start: 16
value_length: 16

scale: "0.005836"

name: rear_left_wheel_speed
unit: km/h

value_start: 32
value_length: 16

scale: "0.005836"

hitps://github.com/open-vehicle-control-system/cantastic



Charger

Nissan|Leaf CAN

3
Battery 2 Vehicl . .
S ehicle Anti-lock Braking
Management Management System
System System
Steering pump % Controls Dashboard
: Controller z
Z S
Brake booster c Fronlfl Ignition Lock
ontroller
s (O\/CS components Infotainment

WS W= m=_ OEM components



Getting the to spin



the Leaf motor

We needed to find the right CAN

messages to power up the motor

We used DBC files we could find
online to figure them out

Information found mostly on auto
enthusiast forums and by observing

the CAN




Using the
control the motor

fo



Connecting the to the

The pedal is a simple potentiometer (2
actually...)

You can see two signals, one is used to Y
give the pedal position and the other '
one is a control value

We connected it to an arduino with a

CAN module over SPI



Deal with

Several relays need to be activated in
a specific order

Adding relays to arduino was quite
straightforward

The arduinos are connected to the

CAN network with CAN SPI modules




The first “ " prototype

Vehicle Management
System

Car controls controller

Contactors controller




Putting the in the

UL i “ Hkﬁ..;i-_ MAM R LT
k>

New motor support welded Connection plates CNC’d and Custom junction piece to connect the
welded motor to the gearbox



Inting

3D pr

b
P
I

*

< Wi




VMS (x1) Generic controller (x3) QOVCS Canhub (x3)
RP14 Arduino R4 Minima (Just cables @)
Custom SPI hat Custom SPI hat

5xMCP2517FD MCP2517FD



in more details

Dynamic Web frontend in Vue.js
Backend Core and API in Elixir + Phoenix
Nerves running the Erlang VM

Buildroot



vehicle

Vehicle composer

# VwPolo
{Polo9N.Dashboard, %{
contact_source: Polo9N.IgnitionlLock,
rotation_per_minute_source: LeafZE@.Inverter
Hlrp
{Pol09N.ABS, %{
contact_source: Polo9N.IgnitionLock,
rotation_per_minute_source: LeafZE@.Inverter
Hbg
{Po109N.PassengerCompartment, [1},
{Pol09N.IgnitionLock, [1},
{Po109N.PowerSteeringPump, %{
selected_gear_source: Managers.Gear

1},

# NissanlLeaf
{LeafZE@.Inverter, %{

selected_control_level_source: Managers.ControlLevel,

selected_gear_source: Managers.Gear,
contact_source: Polo9N.IgnitionLock,
controller: OVCS1.FrontController,
power_relay_pin: 3

Hlbg

Dashboard composer

def definition(order: order) do
%{
name: "Dashboard",
icon: "HomeIcon",
order: order,
blocks: %{
"vehicle-information" => %{
order: 0,
name: "Vehicle Information",
type: "table",
rows: [
%s{type: :metric, name: "Control Level", module: Managers.
ControlLevel, key: :selected_control_level},
%{type: :metric, name: "Manual Control forced", module:
Managers.ControlLevel, key: :forced_to_manual},
%{type: :metric, name: "Selected Gear", module: Managers.Gear,
key: :selected_gear},
%{type: :metric, name: "Key Status", module: Polo9N.
IgnitionLock, key: :contact},
%{type: :metric, name: "Speed", module: Polo9N.ABS, key:
:speed, unit: "kph"},
%{type: :metric, name: "RPM", module: LeafZE@.Inverter, key:
:rotation_per_minute},
%s{type: :metric, name: "Output Voltage", module: LeafZE®.
Inverter, key: :inverter_output_voltage, unit: "V"},



The car’s new *

OVCS VMS

Vehicle information Throttle Torque

Q Dashboard

© Network

i} car Controls

Temperature RPM & Voltage




Generic controller in more details

OVCS Function Physical Pin  OVCS Pin All controllers run the same code on Arduinos now (we

— eloperpe e eppeediits e ialler @vels)

Adoptbutton  p2

SPI CANft b3

Digtal  Dp4 0 Their function is determined by the YMS during adoption

SoftwarePWM D5 0

SoftwarePWwM b6 1

_—_ A bU"Oﬂ on fhe ContrO"er mqkes it gO info Cldopi'lon

SoftwarePwmM D9 2 mode

SPICANCGS ~ DptO

SPLCANCOPI D1t

SPICANCPO  DI2 poTTTETTEITS ] Listenfor 7777 TmTTTTog

SPICANSCK b3 : " SendledleEin adoption frame ;

DAC AO 0 : i frame < : E

Analoglh A0 : : g : ;

Analoghh A2 1 : ' iquration & -
. VMS : Si’Op sending Store COﬂFIgUI‘Cﬂ'IO:\ : Coni-ro"er :

e = R : : adoption i :

12CSDA-MOSFET A4 ; : e : .

12CSCL-MOSFET A5 : L < ; :

Digital  MOSFET0-0->7  3->10 ; : ; :

Digital  MOSFET1-0->7  11->18 OVCS CAN

HardwarePWM  PiC32over UART  0->3



The

Gives information and
diagnostics about car
features

Replaces the gear selector
(PRND)

Built on top of Nerves +
flutterpi




acing the components in the car




the car



Changing the servo-brakes

The polo had a servo-brake that used
the depression from the thermal
engine to provide brake assistance

Tesla’s “brake boosters” are popular
in old car renovations

We simply installed a gen2 Tesla
iBooster to solve this issue




Controlling the steering hydraulic pump

The pump starts when the thermal
engine is started

It knows it’s started when the RPMs
on the CAN are the “idle RPM” of the

thermal engine...

We are controlling it separately
through the VMS by faking the engine
presence and RPM




Building the




What if we transformed our
Into an



Controlling the Polo

Acceleration
Braking

Steering



Braking

Tesla’s brake boosters can be
controlled via CAN

The CAN messages allow to control
the rate of fluid going through the
booster

From genl1 DBC files and some CAN
traces we found, we were able to
reverse the right CAN messages

hitps://github.com/open-vehicle-control-system/dbc/tree/main/ibooster






Steering

The original steering column is not
motorised

We tried reversing a 2019 Polo
steering column (2Q1909144) with

NO SUCCesSS

We stripped the 2Q1 of it's ECU
and motor and simply connected
another servo and angle sensor




Steering ¥




A Mavlink bridge for OVCS

“Micro Air Vehicle Link”, mostly used
in aerial drones

Also supports “rover” types of drones %

LINK

Open prOtOCOI WhiCh can be MICRO AIR VEHICLE COMMUNICATION PROTOCOL
extended with our own messages

Supported by several controllers,
libraries and tools



RC control of OVCS]1




What



, because testing on a real size car

can be...

Same hw/sw stack as
the full size car

Also using CAN as a

communication bus

Will allow us to test
features in a safer way




A bridge for OVCS (wip)

Robot Operating System

Using Rclex, an Elixir ROS2
+ client working with Nerves

< Capabilities L]

No need to run Ubuntu &, i
runs on Buildroot through
Nerves

Ecosystem




stack (wip)

* Uses open source Al models
for object detection and
segmentation

* Sends detected bounding
boxes and classes through

NORYA (oY o] et




The OVCS (wip)

Multi protocol remote

(Mavlink, ROS2, 2)

Allows us to test new features
that are not supported by off-
the-shelve transmitters

And... it's just cool to build
one &




Small reminder

Maybe one day...



That’s it

Any |deas suggest




