Thibault Poncelet

Background

* After 7 years building an Open Banking
aggregator in Elixir, We wanted to learn
something new and test if Elixir could be
a good fit for an automotive use case.

* In 2024, we have built an “Open Vehicle
Control System”: An Elixir based devkit,
allowing to upgrade any vehicle.

* “"Upgrade” meaning:
* Engine swap
* EV retrofit
* Infotainment system

* Autonomous driving

EV retrofit

2007 VW Polo Diesel 2013 Nissan Leaf EM57 motor

Today’s focus:
How to display the Nissan motor RPMs on the Polo’s dashboard?

\\\‘Il"I//

S
\\\\ 20 ;
i e

CAN communication bus

CAN bus (Controller Area Network) is

where all car components talk together

Standard protocol in automotive,
aeronautics, industry, ...

Built-in support in the Linux kernel:

Although CAN is standard, the messages
you transfer through it are not

CAN communication bus

@)
0o
-
Q

requenc ID
..0 hz 0x00050
.. 463 hz 0x00100
.. 93 hz 0x00101
.. 469 hz 0x00110
.. 0 hz 0x00111
.. 245 hz 0x0011A
.. 0 hz 0x001A0
.. 239 hz 0x001D4
.. 0 hz 0x001DA
.. 84 hz 0x00200
.. 0 hz 0x00201
.. 0 hz 0x00280
.. 0 hz 0x00320
.. 0 hz 0x00388
.. 0 hz 0x0038A
.. 0 hz 0x00390
.. 0 hz 0x00393
.. 0 hz 0x00420
.. 0 hz 0x00470
..0 hz 0x004A0
.. 0 hz 0x00508B
.. 0 hz 0x00520
.. 0 hz 0x0055A
.. 0 hz 0x00570
.. 0 hz 0x005A0
.. 0 hz 0x005DO0
.. 0 hz 0x005D8
.. 0 hz Ox005EO
.. 0 hz 0x00600

Data exchanged on CAN is
represented as a series of bytes

o
o

A with a specific ID is
published periodically on the bus

0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.
0.0.

CAN bus tools

An USB-to-CAN

device AN b roveree / / i /‘ ‘n H))

innomaker

engineering and capture GUI.

[USB2CAN-X2 |

a daemon that
provides access to CAN
interfaces on a machine via a
network interface.

Reverse the motor RPM frame

5 Ieaficanibusimessages Public (2 Sponsor @watch 39 ~ % Fork 42 - 17 Star 180 -
forked from baradhilileaf_can_bus_message:
¥ master ~ ¥ 1Branch © 0Tags Q Go tofile 3 Add file ~ <> Code ~ About

LEAF CAN bus message decoding with

This branch is 105 commits ahead of, 2 commits behind baradhili/leaf_can_bus_messages:master . proper database files

0 Readme
5 3 dalathegreat Merge pull request #7 from majbthrd/fixspeedo = 031032 - 3 months aga %) 109 Commits & GPL3.0 license
* Thankfully, there is a large ey 3
, ¥y 180 stars
[AV-CAN.dbc Initial version of AV-CAN 5 years ago ® 39 watching
% 42 forks

CAR-can_AZEO.dbc Merge pull request #7 from majbthrd/fixspeedo 3 months ago
Report I'i‘[)'ﬁ)fﬁ\l(?\""

community of Nissan Leaf g
tinkerers that already reverse
engineered the Leaf frames and

DatabaseEditor.PNG Add screenshot of data editor 6 years ago
EV-can_AZEO.dbc Update EV-can_AZEO.dbc 4 months ago Releases

No releases published

batreon.com/dala

QC-CAN_ALL.dbc Update descriptions for V2X 2 years ago

README.md Response IDs added 3 years ago Packages

published it on the internet.

No pac ublished

canmsgs xlsx Add some detail for GOM / battery bars (0x5a9) L years ago

[README [z GPL-3.0 license # =

Nissan LEAF CAN bus messages (in .DBC format!)

eets/d/

85BttuY4)Z-

This is an evolution of the spreadsheet found at https://docs.google.com/s
EnssH4YZddpsDVuérUFmOP7ouwg

Proper CAN database files are also found in this repository along with the original excel spreadsheet. The .dbc
files are easier to use when working with CAN messages. Please note that there are major differences

https://github.com/dalathegreat/leaf_can_bus_messages

Inverter Status Frame

Signal Parameters

Name:

Start Bit:

Value Table:

MG_OutputRevolution

BITS ->

0

18
MG_EffectiveTorque

26

Bit Length:

Byte Order

Type:

Scale:

Bias:

Min Value:

Max Value:

Units Name:
Receiving Node:
Multiplexing
Multiplex Low Value
Multiplex High Value
Multiplex Parent

Comment:

15

LSB First (Little Endian)
UNSIGNED INTEGER
1

0

rpm
Vector__XXX

® None Multiplexed Multiplexor

Extended

Reversing the Polo RPM Frame

' DO no-l- remove the parse_can_logs / VW CAN IDs Summary.md
originql engine befo re recording Preview | Code Blame 111 lines (103 loc) - 3.81 KB §3 Code 55% faster with GitHub Copilot
* UXT1AC
O COm plei.e CAN .I.race o (?) b1 -saw on 0/128 levels, ACC braking
© (?) ba -noisy, correlates d(speed)

° We Cguld nof ﬁnd q D BC File for . 0)(028((?)) b5 - braking with engine, only on cruise (bit7)?

the 2007 Polo online S
* VW is using similar frames on " s - aceslraton pcl o cris

multiple cars of the same ° (V@ - some smooth graph

ge neration. https://github.com/v-ivanyshyn/parse_can_logs

Emitting a custom frame with

Frame Sender

Ext Rem Data Trigger Modifications Count

0x00 0x00 0x08 0x18 0x00 0x00 0x00 0x00 100ms 220

Enable All Disable All Clear Grid Load to Grid Save Grid

* Based on these findings, we tried to emit the frame on the VW
CAN bus at various frequencies.

* Some values of bytes 2 and 3 were actuating the RPM needle at 10Hz!
e Still need to translate real RPMs into the VW format

Reversing the RPM

Emitted Value Dashboard Value ~

1/min x 100

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000

O -~
1 2 3 4 5 6 7 8 9 10 11 12 13 14

value

0
200
400
800

1000
1200
1500
1700
2000
2150
2500
2700
3100
3300

Scaled Value

- Emitted Value
Dashboard Value ~
Scaled Value

Concrete implementation using Elixir

3 =

Nissan Leaf CAN

Vehicle

Management
System

VW Polo CAN

Anti-lock Braking
System

Dashboard Ignition Lock

CAN on Elixir

* Elixir is a dynamic, functional language running on the BEAM (aka the

Erlang VM).

* The BEAM has been designed to build massively scalable
systems.

» Since Erlang was originally designed by Ericsson to build telephony
switches, all the binary primitives are available outof-the-box.

* Pattern matching is also helping a lot in parsing CAN frames.

Receiving and parsing one

with {:ok, socket} <- :socket.open(29, :raw, 1),
{:ok, ifindex} <- :socket.ioctl(socket, :gifindex, "can@" |> String.to_charlist()),

address <- <<@::size(16)-1little, ifindex::size(32)-1little, @::size(32), 0::size(32), @::size(64)>>,
ok <- :socket.bind(socket, %{:family => 29, :addr => address})
do
{:0k, raw_frame} = :socket.recv(socket)

<<id::1little-integer-size(16),
_::binary-size(2),
byte_number::little-integer-size(8),
_::binary-size(3),
raw_data: :binary-size(byte_number),
_::binary>> = raw_frame

case 1d do

@x1DA ->
<<_::bitstring-size(32), rpm::big-signed-integer-size(16), _::bitstring>> = raw_data
I0.1inspect(xrpm)
end
else

{:error, exrror} -> {:error, errxror}
end

Introducing

* An Elixir library doing all the heavy-litting for sending and receiving CAN
frames.

* Clean YAML DSL to describe your entire CAN Network
* Automatically spawns:
* 1 receiver process (GenServer) per CAN network

* 1 emitter process (GenServer) per emitted frame

https://github.com/open-vehicle-control-system/cantastic

>

Receiving the Leaf RPM value

can_networks:
leaf drive:
bitrate: 500000
received frames:
name: inverter_status
id: Ox1DA
frequency: 10
signals:

- name: rotations_per_minute
kind: integer
endianness: big
sign: signed
value start: 32
value_length: 16
unit: rpm

polo_drive: -

defmodule Leaf.Inverter do
use GenServer

def init(_) do
Cantastic.Receiver.subscribe(self(), :leaf drive, "inverter status")
{:0k, %{}}

end

def handle_info({:handle frame,
%Cantastic.Frame{name: "inverter_ status", signals: signals}},
state)
do
%{
"rotations_per_minute" => %Cantastic.Signal{value: rotation_per_minute}
} = signals

Polo.Dashboard.set_rotation_per_minute(rotation_per_minute)
{:noreply, state}

end

end

Emitting the ' RPM value

defmodule Polo.Dashboard do

can_networks:
use GenServer

> leaf drive: -
polo_drive:
bitrate: 500000
emitted_frames:
name: engine_status

def init(_) do
:ok = Cantastic.Emitter.configure(:polo_drive, "engine_status", %{
parameters_builder_ function: :default,
enable: true,

id: 0x280 S
frequency: 100 1n1t1al_§ata: %{ '
signals: "rotations_per_minute" => 0
- name: rotations_per_minute b
kind: integer +)
unit: rpm {:ok, %{}}
value start: 16 end
value_length: 16
scale: "@.25" def set_rotation_per_minute(rotation_per_minute) do
Cantastic.Emitter.update(:polo_drive, "engine_status", fn (data) ->
%{data | "rotations_per_minute" => abs(rotation_per_minute)}
end)
end

end

Let’s push this on a Raspberry PI

e i, .
ke L | N a0y "
2 L .." Ll
s~/ y
PR
Y/ - R
e/
N,
= /
£y
‘ |

And... [t worls

6% Spin42

Want some

* Loic will present more details about the robotic part tomorrow at
In

* Marc will present the OVCS project tomorrow at in

* ovcs.be

	Diapositive 1 Reverse-engineering CAN and building ECUs using Elixir
	Diapositive 2 Background
	Diapositive 3 EV retrofit
	Diapositive 4 Today’s focus: How to display the Nissan motor RPMs on the Polo’s dashboard?
	Diapositive 5 CAN communication bus
	Diapositive 6 CAN communication bus
	Diapositive 7 CAN bus tools
	Diapositive 8 Step 1 Reverse the motor RPM frame
	Diapositive 9 0x1DA Inverter Status Frame
	Diapositive 10 Step 2 Reversing the Polo RPM Frame
	Diapositive 11 Emitting a custom frame with SavvyCAN
	Diapositive 12 Reversing the RPM scale value
	Diapositive 13 Step 3 Concrete implementation using Elixir
	Diapositive 14 CAN on Elixir
	Diapositive 15 Receiving and parsing one frame
	Diapositive 16 Introducing cantastic
	Diapositive 17 Receiving the Leaf RPM value
	Diapositive 18 Emitting the Polo RPM value
	Diapositive 19 Let’s push this on a Raspberry PI
	Diapositive 20 And… It works!
	Diapositive 21 Want some more?

