

Reverse-engineering CAN and building ECUs using Elixir

Thibault Poncelet

Background

- After 7 years building an Open Banking aggregator in Elixir, We wanted to learn something new and test if Elixir could be a good fit for an automotive use case.
- In 2024, we have built an "Open Vehicle Control System": An Elixir based devkit, allowing to upgrade any vehicle.
- "Upgrade" meaning:
 - Engine swap
 - EV retrofit
 - Infotainment system
 - Autonomous driving

EV retrofit

2007 VW Polo Diesel

2013 Nissan Leaf EM57 motor

Today's focus:
How to display the Nissan motor RPMs on the Polo's dashboard?

CAN communication bus

CAN bus (Controller Area Network) is where all car components talk together

Standard protocol in automotive, aeronautics, industry, ...

Built-in support in the Linux kernel: libsocketcan

Although CAN is standard, the messages you transfer through it are not

CAN communication bus

Data exchanged on CAN is represented as a series of bytes

A frame with a specific ID is published periodically on the bus

					Sniffe	er.			
Delta requenc	, ID	0	1	2	3	4	5	6	7
0.0 0 hz	0x00050	00	09	18	11				1, 25
0.0 463 hz	0x00100	01	01	00					
0.0 93 hz	0x00101	01	01	00					
0.0 469 hz	0x00110	01							
0.0 0 hz	0x00111	01							
0.0 245 hz	0x0011A	04	40	00	00	C0	00	02	FD
0.0 0 hz	0x001A0	00	05	00	00	FE	FE	00	00
0.0 239 hz	0x001D4	6E	6E	00	00	87	44	01	23
0.0 0 hz	0x001DA	A5	32	18	00	00	01	02	D5
0.0 84 hz	0x00200	FF	3F	93	0A	66	05	03	
0.0 0 hz	0x00201	00							
0.0 0 hz	0x00280	00	00	04	00	00	00	00	00
0.0 0 hz	0x00320	1A	00	7F	01	00	00	00	00
0.0 0 hz	0x00388	0B	02	09	0.000000				
0.0 0 hz	0x0038A	B2	02	B0	00				
0.0 0 hz	0x00390	24	00	30	02	00	8E	21	33
0.0 0 hz	0x00393	00	10	00	00	20	00	00	35
0.0 0 hz	0x00420	82	8A	89	FF	00	00	80	00
0.0 0 hz	0x00470	00	02	00	FF	03	0.0	0.0	
0.0 0 hz	0x004A0	00	00	00	00	00	00	00	00
0.0 0 hz	0x0050B	00	00	06	C0	00	00	00	0.3
0.0 0 hz	0x00520	40	42	01	9E	2C 5F	5E	4B	03
0.0 0 hz 0.0 0 hz	0x0055A 0x00570	1E 87	3D 21	3C FF	00 07	ЭГ	00	5A	E8
0.0 0 hz	0x00570	00	00	00	42	C2	8E	19	2B
0.0 0 hz	0x005A0 0x005D0	80	02	40	A0	30	41	19	20
0.0 0 hz	0x005D0 0x005D8	55	02 0C	00	03	10	00	00	00
0.0 0 hz	0x005E0	00	FF	FF	00	00	00	80	00
0.0 0 hz	0x00600	03	, ' '	1.1	00	00	00	00	
0.0 0 112	0,00000	00							

CAN bus tools

- USB2CAN: An USB-to-CAN device
- SavvyCAN: a CAN bus reverse engineering and capture GUI.
- socketcand: a daemon that provides access to CAN interfaces on a machine via a network interface.

Step 1Reverse the motor RPM frame

 Thankfully, there is a large community of Nissan Leaf tinkerers that already reverse engineered the Leaf frames and published it on the internet.

0x1DA

Inverter Status Frame

aramete	_OutputRevolution									Byte Order	15 LSB First (Litt	le Endian)
Bit:	_outputterolution									Type:	UNSIGNED INTE	
	BITS ->	7	6	5	4	3	2	1	0	Scale:	1	
		7	6	5	4	3	2	1	0	Bias:	0	
	0	,	O		7		2	1		Min Value: Max Value:	-16382 16382	
		15	1.4	13	12	11	10	9	8	Units Name:	rpm	
	1	15	14	15	12	''	10	9	0	Receiving Node:	Vector_XXX	
В	-									Multiplexing	None	_ N
	. 2	23 MG_ErrorCodes	22	21	20	19	18 MG_EffectiveTorque	17	16	Multiplex Low Value		
Y	_						·			Multiplex High Value Multiplex Parent		
	3	31	30	29	28	27	26	25 MG_ErrorCodes	24	Comment:		
Т	3							MG_EfforCodes				
	4	39	38	37	36	35	34	33	32			
Ε	4	MG_OutputRevolution										
_		47	46	45	44	43	42	41	40	222		
S	5											
3		55	54	53	52	51	50	49	48			
	6							MG_Clock				
		63	62	61	60	59	58	57	56			
	7	CRC_1DA										

Byte Order	LSB First (Little En	dian)			
Type:	UNSIGNED INTEGER				,
Scale:	1				
Bias:	0				
Min Value:	-16382				
Max Value:	16382				
Units Name:	rpm				
Receiving Node:	Vector_XXX				,
Multiplexing	None	Multiplexed	Multiplexor	Extended	
Multiplex Low Value					
Multiplex High Value					
Multiplex Parent					7
Comment:					

Step 2

Reversing the Polo RPM Frame

- Pro tip: Do not remove the original engine before recording a complete CAN trace
- We could not find a DBC File for the 2007 Polo online
- VW is using similar frames on multiple cars of the same generation.

https://github.com/v-ivanyshyn/parse_can_logs

Emitting a custom frame with SavvyCAN

- Based on these findings, we tried to emit the 0x280 frame on the VW CAN bus at various frequencies.
- Some values of bytes 2 and 3 were actuating the RPM needle at 10Hz!
- Still need to translate real RPMs into the VW format
- physical value = offset + scale * raw_decimal_value

Reversing the RPM scale value

Step 3Concrete implementation using Elixir

CAN on Elixir

- Elixir is a dynamic, functional language running on the BEAM (aka the Erlang VM).
- The BEAM has been designed to build massively scalable soft real-time systems.
- Since Erlang was originally designed by Ericsson to build telephony switches, all the binary primitives are available out-of-the-box.
- Pattern matching is also helping a lot in parsing CAN frames.

Receiving and parsing one frame

```
with {:ok, socket} <- :socket.open(29, :raw, 1),</pre>
          {:ok, ifindex} <- :socket.ioctl(socket, :gifindex, "can0" |> String.to_charlist()),
          address <- <<0::size(16)-little, ifindex::size(32)-little, 0::size(32), 0::size(32), 0::size(64)>>,
                        <- :socket.bind(socket, %{:family => 29, :addr => address})
          :ok
     do
       {:ok, raw frame} = :socket.recv(socket)
       <<id::little-integer-size(16),
         ::binary-size(2),
10
         byte_number::little-integer-size(8),
11
        _::binary-size(3),
         raw_data::binary-size(byte_number),
13
         _::binary>> = raw_frame
14
15
       case id do
16
         0x1DA ->
           <<_::bitstring-size(32), rpm::big-signed-integer-size(16), _::bitstring>> = raw_data
17
           IO.inspect(rpm)
18
19
       end
20
     else
21
       {:error, error} -> {:error, error}
22
     end
```

Introducing cantastic

- An Elixir library doing all the heavy-lifting for sending and receiving CAN frames.
- Clean YAML DSL to describe your entire CAN Network
- Automatically spawns:
 - 1 receiver process (GenServer) per CAN network
 - 1 emitter process (GenServer) per emitted frame

https://github.com/open-vehicle-control-system/cantastic

Receiving the Leaf RPM value

```
can networks:
 leaf drive:
   bitrate: 500000
   received frames:
     name: inverter_status
     id: 0x1DA
     frequency: 10
     signals:
        - name: rotations_per_minute
         kind: integer
         endianness: big
         sign: signed
         value start: 32
         value length: 16
         unit: rpm
 polo drive:
```

```
defmodule Leaf.Inverter do
 use GenServer
 def init(_) do
   Cantastic.Receiver.subscribe(self(), :leaf_drive, "inverter_status")
    {:ok, %{}}
 end
 def handle_info({:handle_frame,
   %Cantastic.Frame{name: "inverter_status", signals: signals}},
   state)
 do
   %{
      "rotations_per_minute" => %Cantastic.Signal{value: rotation_per_minute}
     = signals
   Polo.Dashboard.set_rotation_per_minute(rotation_per_minute)
    {:noreply, state}
 end
end
```

Emitting the Polo RPM value

```
can networks:
leaf_drive:
 polo drive:
   bitrate: 500000
   emitted frames:
     name: engine_status
     id: 0x280
     frequency: 100
      signals:
        - name: rotations per minute
         kind: integer
         unit: rpm
         value start: 16
         value length: 16
         scale: "0.25"
```

```
defmodule Polo.Dashboard do
 use GenServer
 def init( ) do
    :ok = Cantastic.Emitter.configure(:polo_drive, "engine_status", %{
      parameters builder function: :default,
      enable: true,
      initial data: %{
        "rotations_per_minute" => 0
    {:ok, %{}}
  end
  def set_rotation_per_minute(rotation_per_minute) do
    Cantastic.Emitter.update(:polo_drive, "engine_status", fn (data) ->
     %{data | "rotations_per_minute" => abs(rotation_per_minute)}
    end)
  end
end
```

Let's push this on a Raspberry Pl

And... It works!

Want some more?

- Loïc will present more details about the robotic part tomorrow at 13:35 in UB2.147.
- Marc will present the OVCS project tomorrow at 16:00 in K.1.105.
- ovcs.be