Honey, | shrunk
DNSdist

Remi Gacogne = =
_FOSDEM 25-Feb.1st;2025

Initial goal and misconceptions

What is DNSdist

A DNS proxy:

Do53, DNSCrypt, DNS over TLS, HTTPS, QUIC and HTTP/3
Multiple backends with load-balancing options
Health-checks

Efficient packet-cache

DoS protection

POWERDNSS3S

DNSdist as a reverse proxy

clent ~~

- J
R

clent

-

clent -7 . J
- J

Mostly used as a reverse proxy

POWERDNSS3S

DNSdist as a proxy

Backend

But as a proxy as well

POWERDNSS3S

The goal

Around 2021:

Several people: “Hey, DNSdist would be a great fit for DNS encryption on
OpenWrt-powered CPEs”

Us: “Sure, it's a tiny program, with a small memory footprint”
Them: “About that..”

POWERDNSS3S

The goal - OpenWrt supported devices

In 2022, 19.07.10 supported devices with:

e Minimum amount of flash: 4 MB
e Minimum amount of RAM: 32 MB

POWERDNSS3S

The (reasonable) goal

Let's pick a target that is, at least in theory, capable of handling encrypted DNS:
TP-Link Archer C7 AC1750 v2+ with 16 MB of flash, 128 MB of RAM.

We should be able to have a binary size of a couple MB, and a memory
footprint smaller than 4 MB, right?

POWERDNSS3S

How far are we?

DNSdist has got a fair amount of features over the years, and binary size has
grown: 9 MB on x86_64

100000

80000

60000

40000

20000

1.0.0 1.1.0 1.2.0 1.3.0 1.4.0 1.5.0 1.6.0 1.7.0 1.8.0 1.9.0

IDNS

How far are we? Our misconceptions

In the OpenWrt world, what matters is:
e The compressed size on the flash

e The proportional set size (PSS): Private memory of that process plus the
proportion of shared memory with one or more other processes

POWERDNSS3S

Proportional set size (PSS)

On Linux, the PSS of a process can be found via:

e /proc/<pid>/smaps with per VMA entries

/proc/<pid>/smaps_rollup with pre-summed values (slightly more accurate)
plus:, plus Pss_Anon, Pss_File and Pss_Shmem

Pss_Dirty: memory that has been altered
Pss_Anon: anonymous memory, mostly the heap

Pss_File: memory associated with files that has not been modified (can
technically be discarded)

Pss_Shmem: memory shared with other processes

POWERDNSS3S

Proportional set size (PSS) for DNSdist

For DNSdist on OpenWrt, at this point, that means:

¢ 1.8 MB of DNSdist
1.7 MB of libcrypto
440 kB of libssl

850 kB of libstdc++

1.9 MB of heap
Which is waaaaaaaay over our target. Crap, it's not going to be easy.

POWERDNSS3S

The easy steps: tuning, compiler and build
options

N O O W N e

Tuning the configuration

setMaxUDPOutstanding(50) -- 50 concurrent, in-flight, UDP queries
setMaxTCPClientThreads(1) -- a single TCP worker thread for TCP/DoT/DoH
setOutgoingDoHWorkerThreads(1) -- a single TCP worker thread for outgoing DoH
setRingBuffersSize(300, 1) -- we keep track of the last 300 queries
setRingBuffersOptions ({recordResponses=false}) -- and no responses
setMaxTCPQueuedConnections(10) -- reduce the queue for pending TCP connections
setOutgoingTLSSessionsCacheMaxTicketsPerBackend(5) -- only keep 5 TLS tickets per
— backend

setTCPInternalPipeBufferSize(0) -- reduce the size of the buffer when dispatching
— TCP connections

POWERDNSS3S

Build options

Start with the obvious step: disable non-essential features in dnsdist, and
move them to dnsdist-full

carbon

CDB

console (including help messages!)
dnstap

ebpf filtering

ipcipher

LMDB

prometheus

re2

SNMP

POWERDNSS3S

Compiler and linker flags

And tell the compiler and linker to help us:

e Optimize for the size of the binary: -Os
¢ Hide symbols to external modules by default: -fvisibility=hidden

e Enable Link-Time Optimizations, which amongst other things remove
code that is not actually needed (depending on the options enabled: -flto

¢ -fno-ipa-cp works around a bug in the LTO of the specific GCC version
used by the OpenWrt 19 toolchain

e Remove assertions (-DNDEBUG) and strip debug symbols

¢ Disable PIE: it reduces the size of the binary: we can enable it on devices
that have enough memory
POWERDNSS3S

Results

That's a great start:

e Compressed binary size is now below 2 MB
e PSS is automatically lower, but still over target: around 6 MB
But we are not there yet.

POWERDNSS3S

’HTry harder: where is my memory going?

Looking at the heap

Let's start with our direct memory usage, on the heap:

e Looking at the values in smaps_rollup, we see almost 2 MB
e Surely we can do better, but where does that memory usage come from?

e Hard to investigate on the device itself, but we can do that in a emulator
or extrapolate what we see on Linux amdé4

POWERDNSS3S

Massif: a heap profiler

Massif! is the heap profiler of the Valgrind suite:

e can profile page allocations (pool allocators not using malloc)
e can profile stack allocations

¢ results can be visualized with massif-visualizer

® reaaaaaaally slow

"https://valgrind.org/docs/manual/ms-manual.html POWERDNS::3

eap profiler

Total Menory Heap Consusption
UnknownTnl nedFun

2e001

i« Mamory hore | Cagraph | Bocaors

Stackad dagrams: 10

Memory cansumption o dnsdist
oo 3. 40 o oo 877

tmeini

memory heap size

s Dot

oK. Unowninine
il Uniownininea
505 i Urkcomnininedtn (i vctor 11016

Heaptrack: a heap memory profiler for Linux

Heaptrack? is the heap profiler of the KDE project:

® keeps more data than massif, which aggregates data early in the process

e much more efficient: doesn't slow the process that much, and doesn't
consume a lot of memory

Zhttps://github.com/KDE/heaptrack POWERDNS:2

Heaptrack: a heap memory profiler for Linux

Memory usage improvements in DNSdist

This led to multiple improvements in our code:

e Don't load useless ciphers and digests>
e Don't load OpenSSL error messages®
e Don't waste memory by allocating then shrinking®

3https://github.com/PowerDNS/pdns/pull/11166
“https://github.com/PowerDNS/pdns/pull/11988 POWERDNS2::
>https://github.com/PowerDNS/pdns/pull/11171 eee

Memory usage improvements in libh20-evloop

And in libh2o-evloop for OpenWrt®:

e Drop the libyaml| dependency

e Remove a MIME map only used to serve static files, and using a fair
amount of memory

e Reduce the initial size of the HTTP/2 buffer from 80 kB to 8 kB which is
more than enough for most DNS queries

Note that since 1.9.0 DNSdist no longer uses h2o, using nghttp2 for incoming
queries instead.

Shttps://github.com/openwrt/packages/pull/21365 POWERDNS:2

Things that did not help in this round

Using wolfSSL” instead of OpenSSL:

e surprisingly easy, nice OpenSSL compatibility layer
e did not reduce the memory usage significantly in our tests
e actually hurts as soon as a second user of OpenSSL shows up

e OpenWrt 21 switched wolfSSL as the default TLS provider, which should
have helped but we did not see any major change in our case

"https://www.wolfssl.com/ POWERDNSS33

Things that did not help in this round (bis)

Using a packer (UPX®):
e reduces binary size

e no visible change to the PSS since the compressed parts still have to be
uncompressed in memory

8https://upx.github.io/ POWERDNS:2

’n Even harder: releasing ballast

Can we reduce our binary size further without
removing features?

Finding out what is inside our binary with Bloaty?®:
e Compile our binary with the features we want
e Copy the binary, strip it
e Run bloaty <stripped copy> -debug-file=<original binary> -d symbols

https://github.com/google/bloaty POWERDNS:2

Can we reduce our binary size further without
removing features?

[section

LuaContext <> (

odata]
Pusher<>: :push<>() : : {1ambda() _FUN(
readIntoFunction<>()
Binder<>: :operator()<>()
Reader<>: :read()
FunctionImpl:
_M_in
_lua_ffi_code
std
genlog<>()

ounted_ptr_inpla

std ounted_ptr
LuaContext: : Pusher<

push<
setupLuaConfig(): : {1ambda()#1}
LuaContext: :Pusher<

FUN()

)
d::_Function_handl

static_initiali:
[section .dynstr]

— tion_and_destruction_o()

POWERDNSSS

Reducing the size of important structures: inefficient
padding

(gdb) ptype /o Rings::Response

/* offset | size */ type = struct Rings::Response {
/* 0 | 16 x/ struct timespec {
[...]

/* XXX 12-byte padding */
} requestor;
/* XXX 4-byte hole */

/* 72 | 2 */ uint16_t qtype;
/* XXX 2-byte hole */

[...]

/* XXX 4-byte padding */

[...1

/* total size (bytes): 128 */

After the PRhttps://github.com/PowerDNS/pdns/pull/10381 fixing it: “total size (bytes): 120"

POWERDNSS3S

Giving up on false sharing

False sharing'®:

e degrades performance of threaded programs when atomic variables are
aligned next to each other

e is mitigated in PowerDNS by aligning atomics on the size of a cache line
¢ which uses significant memory
® so we added an option to disable this alignment on OpenWrt

%https://en.wikipedia.org/wiki/False_sharing POWERDNSS33

Reducing the number of threads

DNSdist uses several threads to handle queries and responses, for maximum
performance:

e 2 threads per listening address and port, accepting UDP queries and
TCP/DoT/DoH connections from clients

e 1 thread per backend, accepting UDP responses from backend

e several TCP workers, handling TCP/DoT connections from clients as well
as TCP/DoT connections to backends (event-based)

e several DoH workers, handling DoH connections to backends
(event-based)

POWERDNSS3S

Reducing the number of threads (2)

Implemented a collapsed model'! for OpenWrt, reducing CPU and RAM needs:

¢ 1 thread handling incoming UDP queries

¢ 1 thread handling TCP/DoT connections, both incoming and outgoing,
plus incoming DoH

¢ 1 thread handling outgoing DoH connections
e 1 thread per backend, accepting UDP responses from backend

"https://github.com/PowerDNS/pdns/pull/12003 POWERDNS:2

Memory fragmentation

musl libc 1.1.24's memory allocator, used in OpenWrt 19 and 21, is known to
have fragmentation issues'?

e getting rid of a few short-lived allocations (outside of the hot path) thanks
to heaptrack

e triggering the Lua garbage collector (collectgarbage()) at strategic points
during the configuration also helped a bit

¢ reducing the number of threads also reduced fragmentation

000
12//www.openwall.com/lists/musl/2018/04/20/1 POWERDNSS33

Things that did not help in this round

Statically linking libstdc++ in:

e slightly reduces the PSS

* means we would have to recompile DNSdist in case of a security
issue/bad enough bug in libstdc++

e will actually hurt the PSS if a second C++ program is loaded (bigger binary,
not shared)

POWERDNSS3S

Time to call it

e still slightly over the target that we initially hoped to reach
e but return on investment of further investigations was falling very fast
¢ so it was time to contribute our improvements

POWERDNSS3S

’E Putting it all together

Current status

As of OpenWrt 23.05.5, for the mipsel_24kc architecture:

e Compressed size of dnsdist-full: 1.5 MB (5.5 MB uncompressed)
e Compressed size of dnsdist: 630 KB (1.7 MB uncompressed)

e PSS is roughly 4 MB with several backends, incoming Do53, DoT and DoH,
outgoing DoT and DoH

POWERDNSS3S

UCl integration

In our own OpenWrt repository’® we also offer dnsdist-maindns, which
replaces dnsmasq with DNSdist as the DNS provider on the CPE.

It also includes UCI'# integration to make DNSdist easy to use, including via
the Web interface. We have contributed® this to OpenWrt a few months ago
but it has not been accepted yet.

Bhttps://repo.powerdns.com/openwrt/
"4Unified Configuration Interface veo
"Shttps://github.com/openwrt/packages/pull/25398 POWERDNS:2

UCl integration example |

config dnsdist general
option 'enabled' '1'
private key to use for incoming DoT and DoH
option 'tls_key' '/etc/dnsdist.key'
certificate to use for incoming DoT and DoH
option 'tls_cert' '/etc/dnsdist.pem'
Number of entries in the domain cache. 0 means caching is disabled, the maximum value is 2732-1 entries
but is likely limited by the amount of RAM available.
option 'domain_cache_size' '100'
The DNS suffix, or list of suffixes, identifying local domain names
option 'local_domains_suffix' 'lan'
Port on which to accept Do53 queries on (UDP and TCP)
option 'do53_port' '53'
Port on which to accept DoT queries on
option 'dot_port' '853'
Port on which to accept DoH queries on
option 'doh_port' '443'
Whether upstream resolvers learned via the system should be checked for DoT/DoH support
option 'auto_upgrade_discovered_backends' '1'
Whether the Do53 version of auto-upgraded resolver should be kept as fallback
option 'keep_auto_upgraded_backends' '1'
User to switch to, after the configuration has been set up. Default is to run as user 'root'
option 'user' 'dnsdist'
Group to switch to, after the configuration has been set up. Default is to run as group 'root'

option 'group' 'dnsdist' POWERDst.:

UCl integration example I

config interface
option name 'default_interface'
Whether dnsdist will listen on this interface
option enabled 1
Whether dnsdist will accept Dob3 queries, UDP and TCP, on this interface
option do53 1
Whether dnsdist will accept DoT queries on this interface
option dot 1
Whether dnsdist will accept DoH queries on this interface
option doh 1
Whether local domain resolution will be enabled for queries received on this interface
option local_resolution 1
Whether dnsdist will advertise DoT and/or DoH support, if available, in response to DDR queries received on this interface
option advertise 1

POWERDNSS3S

UCl integration - DDR advertisement

To let local devices know that our CPE supports DoT and DoH, allowing them
to automaticall upgrade to a secure transport:

Reply to question for gname='_dns.resolver.arpa.', qtype=SVCB
Rcode: 0 (No Error), RD: O, QR: 1, TC: O, AA: O, opcode: O

0 _dns.resolver.arpa. 60 IN SVCB 1 _dns.resolver.arpa. mandatory=port alpn=dot no-default-alpn\
port=8443 ipv4hint=127.0.0.1 ipv6hint=::1
0 _dns.resolver.arpa. 60 IN SVCB 2 _dns.resolver.arpa. mandatory=port alpn=h2 port=10443 \
ipv4hint=127.0.0.1 ipv6hint=::1 key7="/dns-query"
2 _dns.resolver.arpa. 60 IN A 127.0.0.1
2 _dns.resolver.arpa. 60 IN AAAA il

POWERDNSS3S

	Initial goal and misconceptions
	The easy steps: tuning, compiler and build options
	Try harder: where is my memory going?
	Even harder: releasing ballast
	Putting it all together

