

Implementing a rootless
container manager from

scratch

Lessons learned writing my own container manager: lilipod

:~$ whoami
● Luca Di Maio - 89luca89

● SWE @Chainguard

● Open Source Enthusiast

github.com/89uca89

@LucaDiMaio11

fosstodon.org/@89luca89

luca.dimaio1@gmail.com

lilipod
● Born as a support project for Distrobox

● Need was a self contained, lightweight and fast
container manager

● Less features than Podman and Docker

● Not in scope

● Main target is lightness

● I wanted to know more about containers

● I wanted to improve my go

What are containers?

● Fast

● Light

● Disposable

● Building blocks

● Rootfs

● Namespaces

● Capabilities

● Cgroups

● Seccomp filters

● LSM (Selinux/Apparmor)

What are containers?

Rootfs
● Base file system for linux userland

● Distributed as images via OCI registries

● dockerhub

● quay.io

● ghcr.io

● gcr.io

● public.ecr.aws

Rootfs
● json - Describes image

composition

● Set of layers

● Tarballs

● Easy to dedup

lilipod example
●

Using the rootfs
● chroot

● change rootfs for a process to

a new directory

● good for:

– restricting filesystem access

– BYO distro for processes

Rootfs ready!

● for chroot we need:

– to be the root user

– to mount additional filesystems (sysfs, procfs,

tmpfs…)

Chroot

STOP!

ROOTLESS TIME!

● Building blocks

● Rootfs

● Namespaces

● Capabilities

● Cgroups

● Seccomp filters

● LSM (Selinux/Apparmor)

What are containers?

Namespaces
● Kernel provides process isolation means using namespaces

● Technology to provide isolated views of Linux resources

● Basically: how containers “contain”

● Mount namespace

● User namespace

● UTS namespace

● PID namespace

● IPC namespace

● Network namespace

● Time namespace

● call syscall unshare,

fork the process

● child will live in its

own namespace

– rw local copy of mount tree

– rw local copy of user tree

Namespaces

User Namespace

User Namespace

Namespaces going rootless

lilipod example

● chroot can be escaped easily:

– for (int i = 0; i < 1024; ++i) {chdir(".."); chroot(“.”); }

● pivot_root is a different approach

– switches the directory as the root of the mount tree

– can leverage mount namespace to unmount the old rootfs

– original rootfs is completely not accessible anymore

Chroot caveats

Pivot Root

Pivot Root

Pivot Root

User Namespace caveats

User Namespace caveats
● Single user mapping

User Namespace caveats
● Does not allow extra groups and users

● We need subuid and subgid maps

User Namespace helper

● Only root can map multiple IDs and let setgroups

● newuidmap/newgidmap are setuid binaries

● Launch newuidmap/newgidmap on unshared process

● Process will have range of uid/gid to use

User Namespace helper

exec: newuidmap <child_pid> 0 1000 1 1 100000 65536

lilipod example

User Namespace helper

Start of the
namespace’s
IDs range

Start of the
main IDs range
mapped to

Size of the
range to map

User Namespace helper

PID Namespace

Network Namespace

● Building blocks

● Rootfs

● Namespaces

● Capabilities

● Cgroups

● Seccomp filters

● LSM (Selinux/Apparmor)

What are containers?

Capabilities
● Starting with kernel 2.2, Linux separates privileges into

distinct units which can be independently enabled and disabled

● Namespaces are not enough

● Container is now

defaulting to

all capabilities

allowed

Capabilities
● Too many can lead to container escape

● Eg:

– load evil kernel module (CAP_SYS_MODULE)

– mount and chroot via procfs (CAP_SYS_ADMIN + unshared
PID ns)

● Drop unneeded
caps

lilipod example

Almost there

● Building blocks

● Rootfs

● Namespaces

● Capabilities

● Cgroups

● Seccomp filters

● LSM (Selinux/Apparmor)

Still not enough

https://github.com/
89luca89/lilipod

Thanks!

Any
Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

