
State persistence over kexec

Kexec HandOver (KHO)

Why persist state?

You want to update your kernel. But you want to keep

● VMs with VFIO alive
● a dynamic sized in-memory file system
● PCIe PF/VF configuration alive
● driver configuration like flow tables
● memory content of user space applications (CRIU)

Memory persistence proposals

● PRAM (2013)
● PKRAM
● persistent memory pools
● prmem
● KHO + guestmemfs

https://lore.kernel.org/lkml/cover.1372582754.git.vdavydov@parallels.com/
https://lore.kernel.org/kexec/1682554137-13938-1-git-send-email-anthony.yznaga@oracle.com/
https://lore.kernel.org/all/169645773092.11424.7258549771090599226.stgit@skinsburskii./
https://lore.kernel.org/linux-mm/20231016233215.13090-1-madvenka@linux.microsoft.com/
https://lore.kernel.org/linux-mm/20240117144704.602-1-graf@amazon.com/
https://lore.kernel.org/all/20240805093245.889357-1-jgowans@amazon.com

KHO

● Framework for drivers to hook into
● Serialize/deserialize for state
● Preserves arbitrary memory pages
● Preserves device state
● Similar to Xen breadcrumbs.

○ http://david.woodhou.se/live-update-handover.pdf

KHO building blocks

● KHO FDT passed from old to new kernel
○ Semi-structured driver data
○ Memory ranges to preserve (only non-GFP_MOVABLE)

● Arch specific boot data
○ arm64 appends KHO FDT as “chosen” node
○ x86 adds KHO FDT location to setup_data

● Scratch memory
○ CMA range reserved early at boot by the first kernel

■ only usable for movable allocations to not collide with persisted memory later
○ kexec’ed kernel starts with only scratch memory available
○ After reserving persistent memory, scratch becomes CMA

KHO Device Tree

● Flattened Device Tree
● Same file format as system DT, but different content
● Standardized serialization format with

○ Versions for backward compatibility
○ Tooling to describe layout and validate KHO FDT integrity
○ Flexible types

ftrace {
 compatible = "ftrace-v1";
 events = < 1 1 2 2 3 3 >;

 global-trace {
 compatible = "ftrace,array-v1";
 trace-flags = < 0x3354601 >;

 cpu0 {
 compatible = "ftrace,cpu-v1";
 cpu = < 0x00 >;
 mem = < 0x101000000 0x38
 0x101000100 0x1000
 0x101000038 0x38
 0x101002000 0x1000 >;
 };
 };
};

KHO memory states

CMA CMA

persistent

persistent

persistent

persistent

scratch

persistent

persistent

persistent

persistent

Early
allocs +

CMA

persistent

persistent

persistent

persistent

activate KHO kexec -> early boot memory reclaim

Userspace ABI

● /sys/kernel/kho/scratch_phys
○ Physical addresses of the scratch areas

● /sys/kernel/kho/scratch_len
○ Length of the scratch areas

● /sys/kernel/kho/active
○ enable/disable state serialization when kexec_load_file() happens

Userspace ABI

● /sys/kernel/kho/dt_max
○ Maximal size of the device tree

● /sys/kernel/kho/dt
○ The device tree generated during state serialization

● /sys/firmware/kho/dt
○ The device tree passed from the previous kernel

Flow - first kernel

● Early boot time
○ Reserve scratch areas

● Late boot time
○ Release scratch areas as CMA blocks to buddy allocator

● User requests serialization
○ echo 1 > /sys/kernel/kho/active

○ KHO calls user’s serialization callbacks and creates device tree
○ Data serialized to KHO becomes immutable

Flow - first kernel

● User loads kexec image
○ KHO appends scratch metadata and device tree to kexec image
○ Arch-specific boot information created for KHO

● User requests kexec reboot

Flow - second kernel

● Very early boot
○ setup_arch() parses KHO boot information
○ KHO parses device tree and scratch metadata
○ KHO enables “scratch only” mode for early memory allocations

● Late boot
○ KHO users deserialize their state and claim their memory
○ Scratch memory becomes CMA

Open questions

● Scratch management
○ Initial reservation size
○ Scratch resizing
○ Scratch allocation failure - panic() vs disabling KHO

● Data format
○ FDT all the way
○ Intermediate data structure converted to FDT at kexec_reboot()
○ Completely new data format

Open questions

● State transitions
○ Allow serialization after kexec_load_file()
○ More fine grained states
○ Integration with the driver core
○ Userspace involvment

Thank you

