Multi-Profile UKls

and Other Ways to Supercharge Your Unified
Kernel Images

20 min



UKIs? What's that again?

UKls —

Single UEFI PE binary consisting of:
systemd-stub EFI stub +
Kernel image +
initrd image +
Kernel command line +
Devicetree +

Boot splash +

— https://uapi-group.org/specifications/specs/unified_kernel_image/


https://uapi-group.org/specifications/specs/unified_kernel_image/

Benefits

: one file the boot loader needs to read

. one file that can be signed + measured as whole



Problem Statement

Not trivially locally modifiable, uniform image, everywhere

Solution #1: (authenticated via SecureBoot/shim), covering initrd,
devicetree, kernel cmdline, CPU pcode, ...

Solution #2: (authenticated via TPM), for parameterization of
system and services

Solution #3: + images (authenticated via
kernel keyring), for extending /etc/ and /usr/

Conceptually all three are “side-cars”: files dropped next to kernel that extend UKI
in a flexible fashion



Multi-Profile UKIls

Solution #4 (new)
A single UKI — but with multiple profiles

One UKI, with multiple alternative sections for kernel command line, initrd, and so
on.

Not a sidecar.
Limited flexibility, only a few blessed configurations.

Primary use-case: one UKI with multiple different kernel command lines, e.g. one
for regular boots, one for recovery mode, one for factory reset, one for storage
target mode, and similar.



Multi-Profile UKls, Part #2

systemd-boot has been updated to understand profiles
One UKI, multiple menu items
Profile choice is measured to TPM PCR
Authentication by SecureBoot + PCRs just like any other UKI
Measurement only covers sections of chosen profile
systemd-measure + ukify natively support multi-profile UKls

Profiles carry extensible, descriptive metadata (used for menu item strings)



Other Ways to Supercharge UKls

Automatic choice of blob
Include multiple sections
Include section that maps MSFT CHID — Devicetree “compatible” string

— Devicetree is automatically selected at boot, by systemd-stub



Soon: Bring-Your-Own-Firmware

Automatic choice of firmware update
Usecase: BYOF cloud systems
Include one or more sections (containing name + UEFI capsule)
Include a . hwids section that maps MSFT CHID — . efifw firmware name
Firmware is automatically installed at boot when needed, by systemd-stub, followed by reboot

NB: gemu can nowadays directly boot into UKI (no boot loader, no systemd-stub necessary for
any of this)

(See other FOSDEM talk by Anhi:
https://fosdem.org/2025/schedule/event/fosdem-2025-4661-introducing-fuki-guest-firmware-in-
a-uki-for-confidential-cloud-deployments/)



https://fosdem.org/2025/schedule/event/fosdem-2025-4661-introducing-fuki-guest-firmware-in-a-uki-for-confidential-cloud-deployments/
https://fosdem.org/2025/schedule/event/fosdem-2025-4661-introducing-fuki-guest-firmware-in-a-uki-for-confidential-cloud-deployments/

charged UKIls

Embed a whole OS into a UKI — USI (“ ")
Never transition into any other file system
Whole OS runs from the initrd cpio
Conceptually from PoV of kernel: system never leaves the initrd
Conceptually from userspace PoV: system never goes through initrd

Example: diskomator (https://github.com/poettering/diskomator)



https://github.com/poettering/diskomator

How to Build Supercharged UKIls + USIs?

Manually: systemd-measure + ukify

Or more comprehensively:



The End



