
THE FUTURE IS BUILT ON BLUEROCK

A Formal Specification of
the NOVA Microhypervisor

1

Hai Dang, David Swasey, Paolo G. Giarrusso, Gregory Malecha

BlueRock Security, Inc

Microkernel and Component-Based OS DevRoom

FOSDEM, 1 February 2025

THE FUTURE IS BUILT ON BLUEROCK2

VMMVMM
Platform
Manager

Platform
ManagerUMX

NOVA

VMM
Untrusted
Customer
Services

Master
CtrlvSwitch

Physical Hardware

NOVA
API

BIG GOAL
Verify the whole stack against a
strong user-space specification.
e.g. the “bare-metal property”.

This talk
Modular formal specification and

verification of the NOVA microkernel
within the BlueRock virtualization stack

THE FUTURE IS BUILT ON BLUEROCK3

Modular, Formal Specification and Verification
● Formal: unambiguous, thorough, with greater confidence

○ Properties are stated (specified) and proven (verified) rigorously in a logic.

● Modular: independent, loosely coupled development
○ Specification and verification aligns with modularity of implementation.

○ Separation logic: separation of resources with extensible abstractions.

● Machine-checked: more automated
○ Proofs are checked algorithmically (in the Rocq proof assistant, formly Coq).

○ Powerful proof automation for C++ to reduce manual proofs.

THE FUTURE IS BUILT ON BLUEROCK4

Separation Logic (SL): separation of resources
{ sel ↦ (?, obj) }
cap_update(sel, perms)
{ sel ↦ (perms,obj) }

{ sel ↦ (perms,obj) }
cap_validate (sel, perm)
{ ret perm ∈ perms. sel ↦ (perms,obj)
}

Hoare logic describes how
the code updates the state
from pre- to post-condition,
sequentially.
Each points-to assertion
describes only the state
fragment one cares about

 { sel1↦ (?, sm) ★ sel2 ↦ ({CTRL},sc)}

 { sel1↦ ({UP}, sm) ★ r2 = true ★ sel2 ↦ ({CTRL},sc) }

{ sel1↦ (?, sm) }

cap_update(sel, UP);
{ sel1↦ ({UP}, sm) }

{ sel2 ↦ ({CTRL},sc) }

r2 = cap_validate (sel2, CTRL);
{ r2 = true ★ sel2 ↦ ({CTRL},sc) }

Composing modular
specs and proofs

The separating conjunction
★ joins separated resources

Capability Table

sel1 ({UP, DOWN}, sm)

…

sel2 ({CTRL}, sc)

…

★

THE FUTURE IS BUILT ON BLUEROCK5

Separation as the basis for modularity
● Small-footprint assertions (e.g. sel ↦ (perms,obj)) capture the

separation of resources in SL.
○ NOVA state is decomposed into logically disjoint kernel objects, each with its own state.

● Spatial separation is basic.

● Temporal separation (concurrently accessed resources) requires
state-of-the-art logical constructs.

THE FUTURE IS BUILT ON BLUEROCK6

Advanced Concurrent Separation Logic (CSL)
Lock-based concurrency: the resource is lock-protected

{ sel ↦ UP } … { sel ↦ UP }

{ sel ↦ ? } … { sel ↦ UP }

The lock protects the capability for sel, which can
be accessed sequentially during the critical section.

rel()

rel()acq()

acq()

cap_update(sel, UP)

cap_validate (sel, UP)

THE FUTURE IS BUILT ON BLUEROCK

cap_update(sel, UP)

cap_validate (sel, UP) cap_update(sel, DOWN)

7

Advanced CSL: Logical Atomicity for Linearization

Chaining atomic updates <P1><Q1> ; <P2><Q2> ; <P3><Q3> to
specify operations with more than one linearization point.

linearization point

linearization pointlinearization point

An atomic update captures how an operation logically atomically
consumes the atomic pre-condition provided by the client,
potentially updates it, and returns the atomic post-condition.

Fine-grained concurrency: the resource is accessed atomically

<sel ↦ (?,sm)><sel ↦ ({DOWN},sm)>

<sel ↦ (?,sm)><sel ↦ ({UP},sm)>

<sel ↦ cap><sel ↦ cap>

THE FUTURE IS BUILT ON BLUEROCK8

Specifying Fair Semaphores
with Timeout

SM capability
check

BAD_CAP

SUCCESS/OVRFLOW

UP (incremented)

SEMAPHORE UP

SM capability
check

BAD_CAP

DOWN as blocked

SUCCESSDOWN as
decremented

unblocked by timeout

TIMEOUTSEMAPHORE DOWN

* order is specified formally, but not informally.

The capability can be
concurrently updated.

THE FUTURE IS BUILT ON BLUEROCK

<sel ↦ cap><sel ↦ cap>

9

Specifying Semaphore Up
<sm ↦ n><sm ↦ n+1>

SM capability
check

BAD_CAP

SUCCESS/OVRFLOW

actual UP

SEMAPHORE UP

UP SPEC
<sel ↦ cap><sel ↦ cap> ;
if cap is (perms,sm) ∧ UP ∈ perms then
 <sm ↦ n><sm ↦ (if n < MAX then n+1 else n)> ;

Q(if n < MAX then SUCCESS else OVRFLOW)
else Q(BAD_CAP)

SM capability check

incremented (released)

Q: Client-picked obligation describing the continuation

Small-footprint assertions
needed for Semaphores
● (capability) sel ↦ (perms, sm)
● (counter value) sm ↦ n
● (blocked ECs) sm ↦ ecs

THE FUTURE IS BUILT ON BLUEROCK

<sm ↦ ecs><sm ↦ …>

10

Specifying Semaphore Down

<sel ↦ cap><sel ↦ cap> <sm ↦ n ★ sm ↦ ecs’><...>

∧

<sm ↦ ecs’><...>

SM capability
check

BAD_CAP

DOWN as blocked

SUCCESSDOWN as
decremented

unblocked by timeout

TIMEOUTSEMAPHORE DOWN

DOWN SPEC
<sel ↦ cap><sel ↦ cap> ;
if cap is (perms,sm) ∧ DOWN ∈ perms then

<sm ↦ ecs><sm ↦ ecs ++ [ec]> ;
 (<sm ↦ ecs’><sm ↦ ecs’ \ [ec]> ; Q (TIMEOUT))
∧ (<sm ↦ n ★ sm ↦ ecs’> <sm ↦ n-1 ★ sm ↦ ecs’’ ★ ecs’ = [ec]++ecs’’ > ;
 Q(SUCCESS))

else Q(BAD_CAP)

Classical conjunction (∧):
Clients have to handle

both possibilities

ec is blocked

ec is unblocked
due to timeout

decremented (acquired)
and unblocked

Small-footprint assertions
needed for Semaphores
● (capability) sel ↦ (perms, sm)
● (counter value) sm ↦ n
● (blocked ECs) sm ↦ ecs

THE FUTURE IS BUILT ON BLUEROCK11

Separation Logic as the Specification Language
UP SPEC
<sel ↦ cap><sel ↦ cap> ;
if cap is (perms,sm) ∧ UP ∈ perms then
 <sm ↦ n><sm ↦ (if n < MAX then n+1 else n)> ;

Q (if n < MAX then SUCCESS else OVRFLOW)
else Q(BAD_CAP)

DOWN SPEC
<sel ↦ cap><sel ↦ cap> ;
if cap is (perms,sm) ∧ DOWN ∈ perms then
 <sm ↦ ecs><sm ↦ ecs ++ [ec]> ;
 (<sm ↦ ecs’><sm ↦ ecs’ \ [ec]> ; Q (TIMEOUT))
 ∧ (<sm ↦ n ★ sm ↦ ecs’> <sm ↦ n-1 ★ sm ↦ ecs’’ ★ ecs’ = [ec]++ecs’’ >;

 Q(SUCCESS))
else Q(BAD_CAP)

● Small footprint: for every atomic update, the client
of NOVA only needs to consider the minimal
resources for each NOVA’s functionality.

● Fine-grained concurrency:
○ resources need not be available all the time.
○ interleavings of atomic updates are visible.

● Client flexibility: client can choose to reduce
concurrency (the number of interleavings), e.g. but
adding locks if desired.

● Robustness: the specs cover all cases, NOVA either
provides proper functionalities, or reports errors
gracefully.

THE FUTURE IS BUILT ON BLUEROCK12

NOVA verification example: Semaphore Down
if (!csm.validate (Capability::Perm_sm::CTRL_DN))

 self->sys_finish_status (Status::BAD_CAP);

dn (Ec *const self, bool zero, uint64_t t)

{

 { Lock_guard <Spinlock> guard { lock };

 if (cnt) {

 cnt = zero ? 0 : cnt - 1;

 return;

 }

 self->block()

 enqueue_tail (self);

 }

 if (self->block_sc()) {

 if (t)

 self->set_timeout (t, this);

 …

 }

}

bool up() { … }

void timeout (Ec *const ec) { … }

<sm ↦ ecs><sm ↦ ecs ++ [ec]> ; (ecs = ecs’’ = [] and ecs’ = [ec] as n > 0)
<sm ↦ n ★ sm ↦ ecs’><sm ↦ n-1 ★ sm ↦ ecs’’ ★ ecs’ = [ec]++ecs’’ > ;
Q(SUCCESS)

<sel ↦ cap><sel ↦ cap> ;
Q(BAD_CAP)

<sm ↦ ecs><sm ↦ ecs ++ [ec]> ;

<sm ↦ ecs’><sm ↦ ecs’ \ [ec]> ; Q (TIMEOUT)

<sm ↦ n><sm ↦ n+1> (from UP)
<sm ↦ n+1 ★ sm ↦ ecs’><sm ↦ n ★ sm ↦ ecs’’ ★ ecs’ = [ec]++ecs’’ > ;

external
linearization

helping
Q(SUCCESS)

{ this ↦ sm.R g q }

{ this→cnt ↦ n ★ this ↦ blocked ecs ★ … }

Formal verification requires us to write
down the complex protocol explicitly.unscheduled

C++ proof
automation

Lock-protected
internal resources

{ this→cnt ↦ (0 or n-1) ★ … }

{ this→cnt ↦ 0 ★ … }

THE FUTURE IS BUILT ON BLUEROCK

NOVA as a Machine

User

Kernel

Hypervisor

CPU "Level" / "Rings"

User

Kernel

NOVA

Replace the CPU
hypervisor semantics with
NOVA semantics

"Passthrough" user and
kernel semantics to
host/guest processes

Modifications to handle
"exceptional" behavior
(e.g. traps, syscalls, etc.)

Described in separation logic

13

THE FUTURE IS BUILT ON BLUEROCK14

Modular, concise, expressive
specs in Separation Logic

NOVA implementation
(C++ and ASM)

Physical hardware

Verification of NOVA on
top of the formal model
for physical hardware.

User-space Specs and Proofs

Robust Safety

Safe against
arbitrary clients

Client Verifications
(e.g. VMM, UMX, …)

More idiomatic
uses of NOVA spec

Whole-system Verification
(the bare-metal property)

Combined properties
for both verified and

untrusted code

A Formal Specification of the NOVA Microhypervisor

THE FUTURE IS BUILT ON BLUEROCK

💡More information
● Tech report🔗 for the NOVA

formal specification.

● (Open) BriCK🔗 separation
logic for C++ semantics.

● (To open) Proof automation
for C++ and more languages.

15

VMMVMM
Platform
Manager

Platform
Manager

UMX
9KLOC

NOVA proofs: 30KLOC in Rocq

VMM
40KLOC

Untrusted
Customer
Services

Master
Ctrl

vSwitch
63KLOC

Physical Hardware Model: 11KLOC

NOVA specs🔗:
7KLOC (open)

The rest to
be opened

● Formal Specification and Verification: explicit,
unambiguous mathematical modeling provides
greater coverage and confidence.

● Separation and Logical Atomicity for modular
and highly concurrent specification.

● Expressiveness once-and-for-all: strong
specification supports both disciplined and
undisciplined clients, and reduces proof efforts.

Take-home Messages

https://bedrocksystems.com/wp-content/uploads/2024/04/nova-interface.pdf
https://github.com/bluerock-io/BRiCk
https://github.com/bluerock-io/fm-releases/tree/main/nova_interface.2024-04-16

THE FUTURE IS BUILT ON BLUEROCK

Appendix

THE FUTURE IS BUILT ON BLUEROCKTHE FUTURE IS BUILT ON BLUEROCK16

THE FUTURE IS BUILT ON BLUEROCK

Challenges
� Hardware modeling

� semantics decomposition

� ASM verification

� Logic soundness and end-to-end adequacy

17

THE FUTURE IS BUILT ON BLUEROCK18

User Memory

Interrupt
Controllers

SMMU /
IOMMU

Device 1 Device 2Memory
Controller

Ring 1

Ring 0

Ring -1

Kernel Memory
CPU

Kernel API
CPU API Memory API Interrupt

API
Device

API

security-irrelevant
instructions

memory
config

memory
access

interrupt
config/delivery

device
config

Events communication /
scheduling

user-owned

μkernel-owned

Microkernel owns minimum, security-relevant resources

THE FUTURE IS BUILT ON BLUEROCK19

User Memory

Interrupt
Controllers

SMMU /
IOMMU

Device 1 Device 2Memory
Controller

Ring 1

Ring 0

Ring -1

Kernel Memory
CPU

Kernel API
CPU API Memory API Interrupt

API
Device

API

security-irrelevant
instructions

memory
config

memory
access

interrupt
config/delivery

device
config

Events communication /
scheduling

user-owned

μkernel-owned

NOVA exposes kernel objects and hypercalls
with HW-assisted virtualization

EC: execution contexts
SC: scheduling contexts
PT: portals

PD: protection domain with capabilities in Object spaces

SM:
semaphores

Memory
spaces

DMA
spaces

assign_int
ctrl_sm assign_devctrl_pd

ctrl_ec
ctrl_sc
ctrl_pt

ipc_call
ipc_reply

HW-assisted
virtualization,
e.g. translation with page tables

THE FUTURE IS BUILT ON BLUEROCK

NOVA Specification Requirements

● Support reasoning about
applications running on top of NOVA

● Support running untrusted
(potentially malicious) applications

● Support running both trusted and
untrusted applications in parallel

Verify NOVA against a single specification NOVA

VMMVMM
Platform
ManagerUMX

NOVA

VMM
Customer
Services
(unverified)

Runtime
ServicesvSwitch

Physical Hardware

Master
Ctrl

20

THE FUTURE IS BUILT ON BLUEROCK

Separation Logic as the Specification Language
for NOVA API

21

Kernel Objects
● Protection Domain and Spaces

○ Object capability sel ↦ (perms, obj_id)
○ Memory spaces (host, guest, DMA, …) va ↦ (perms, pa)

● Threads
○ Execution context

■ (registers) ec.r1 ↦{reg} val
■ (call stack) ec ↦{callstack} ecs
■ (UTCB) ec ↦{utcb} pa
■ (continuation) ec ↦{cont} code

○ Scheduling context sc ↦ ticks
● Communication

○ Portals pt ↦ mtd
○ Semaphore

■ (counter value) sm ↦ n
■ (blocked ECs) sm ↦ ecs

Hypercalls
● create_{pd,ec,sc,pt,sm}
● ctrl_{pd,ec,sc,pt,sm}
● ipc_call, ipc_reply
● assign_dev, assign_int, ctrl_pm

Exposed as small-footprint
SL resources

Describe with weakest preconditions
and logical atomicity for concurrency

“Pass through"
CPU behavior

User-mode Semantics
● Behavior of an execution context when it

is not interacting with NOVA
● “Remaining” behaviors that are

parametric to the NOVA separation logic

THE FUTURE IS BUILT ON BLUEROCK

Specifying User-code Behavior:
Parametric architectural semantics + NOVA logical specs

22

wp_nova_ec ec regs ≈
∃ regs k, ec ↦{reg} regs ★ec ↦{cont} k ★ … ★
(∀ evt regs', cpu.step regs evt regs' ⇒

ec ↦{reg} regs’ ★ … ★ ⇒
match evt with
| None => wp_nova_ec regs'
| Some syscall => wp_hypercall ec syscall ..
| Some (mem ..) => wp_mem ..
| …
end).

Weakest-precondition: proof obligation
to show that the ec has good behaviors

State before the step The step semantics that is
mostly parametric to the logic

State after the step
No special interaction
with NOVA, continue

NOVA specs for
interacting with
NOVA hypercalls

NOVA specs for
address translation
and memory access

THE FUTURE IS BUILT ON BLUEROCK

Supporting Verification on top of NOVA

● Prove weaker specifications that
are easier to work with when
clients are well-behaved

● Clients choose which
specification they want

Customer
Services
(unverified)

NOVA

Derived Proofs
"Safe" Specs

"Raw" Specs

VMMVMM
Platform
ManagerUMX

NOVA

VMM
Runtime
ServicesvSwitch

Physical Hardware

Master
Ctrl

23

THE FUTURE IS BUILT ON BLUEROCK

Userspace
Robust Safety

State may change integrity levels
throughout the execution of the program.

● High integrity state shared with
untrusted code.

● Low integrity state revoked from
untrusted code.

Revocation is generally difficult and
requires tight reasoning about
confinement and visibility.

VMMVMM

NOVA

VMM Unverified
Code

Master
CtrlvSwitch

Physical Hardware

NOVA

Create resources, pass to
untrusted code, revoke
resources from untrusted code.

Share resources with verified code.
Requires strong specification.

Support a "data life cycle".
1. Create state. (high)
2. Configure state. (high)
3. Share permissions with untrusted code? (low)
4. Revoke state. (high)
5. Destroy state. (high)

Precise specifications support
endorsement (low -> high) because

they decouple state from policy.

Provide mechanisms (assertions),
not policies (invariants, quantifiers).

Can share limited permissions,
e.g. only up a semaphore, only call
a portal, only read a page, etc.

Entire data lifecycle is provable
using the strong specification.

24

THE FUTURE IS BUILT ON BLUEROCK

Proving Robust Safety
from the Spec

Express the high-low state distinction
within separation logic.

● Invariants allow flexible,
concurrent sharing.

● Existential quantifiers express
low-integrity

rs-inv∃ objs, let valid o := o \in objs in
 [★list] o \in objs,

★ all schedulable ECs are valid
★ all interrupts bound to valid interrupt SMs

Need to Show
Userspace Resources |-- |={T}=> inv rs-inv
inv rs-inv |-- wp_nova_ec boot_ec boot_regs

∃ v ecs, sm.value γ v
 ★ sm.queue γ ecs ★ [| Forall valid ecs |]

…
Properties for other
kernel object types.

"Low integrity" invariant for semaphores.
Ownership exists, values are minimally
constrained.

Over arbitrary user binaries.

25

THE FUTURE IS BUILT ON BLUEROCK

Proving Robust Safety
from the Spec

Express the high-low state distinction within
separation logic.

● Use an invariant to allow flexible sharing.
● Use existential quantification to express

low-integrity
Prove this invariant

● Is constructible from the NOVA boot
resources.

● Entails wp_nova_ec (and wp_nova_dev).

rs-inv

PD
SM

● All legal object/memory selectors map to
valid objects/userspace pages (or null)

● Root PD or belong to a valid PD

● Have a value and a wait queue
● All ECs in the wait queue are valid
● Belong to a valid PD

EC

● Have valid user stage, e.g. register file
● Belong to a valid PD
● Bound to a valid CPU

SC

● Bound to a valid global EC or VCPU
● Belong to a valid PD

PT

● Bound to a valid local EC on the same core
● Belong to a valid PD

∃ v ecs, sm.value γ v
 ** sm.queue γ ecs
 ** [| Forall valid ecs |]

Existential quantifiers
capture "low-integrity" state.

∃ objs, let valid o := o \in objs in
 [★list] o \in objs,

★ all schedulable ECs are valid
★ all interrupts are bound to valid interrupt SMs

Robust safety for NOVA!
This invariant is too weak to support
userspace verification.

26

THE FUTURE IS BUILT ON BLUEROCK

Entering an Abstraction
A Generic Pattern

boot -* wp_arm_el2 boot_regs

NOVA_boot -* wp_nova_ec ec regs

cpp_init nova -* wp_cpp nova

C++ source code proof

C++ compiler correctness

cpp_init nova -* wp_cpp nova

ASM source code proof

27

THE FUTURE IS BUILT ON BLUEROCK

Starting NOVA – the spec of “main()”
Simplified

∀ startup_image,
 (∀ root_pd root_ec root_sc,
 pd.mem root_pd startup_image -*
 initial_pd state root_pd root_ec root_sc -*
 memory -* … -*
 wp_nova_ec root_ec (startup_regs …))
⊢ NOVA_loaded -*
 elf startup_image -*
 memory -*
 … -*
 wp_arm_el2 boot_regs

Raw machine resources.
Given to NOVA
by the bootloader.

Behavior of the boot CPU expressed
as a weakest-precondition.

Weakest
precondition
for the root EC.

NOVA machine resources.
Given to userspace by
NOVA.

Parametric over any startup
program, well-behaved or not.

The "program" is the register state.

28

THE FUTURE IS BUILT ON BLUEROCK

Establish properties for the
applications that run on top of
NOVA.

● Use CaReSL-style techniques to
prove refinement using ghost
state and invariants.

● Extract the end-to-end proof
(independent of SL) using Iris
adequacy.

If you want a operational
specification of only NOVA, you can
instantiate spec init with an
appropriate model.

spec
init ⊢ c++ prog.init -* wp_cpp prog.main

spec
init ⊢ nova_state -* elf (C prog) -* wp_nova_ec ...

spec
init ⊢ physical_state -* wp_arm boot

System
Refinement

Use adequacy to extract a standard
operational refinement proof.

nova_ok

cpp_ok

app_ok

NOVA

CaReSL-style operational specification
of the userspace application.

Effectful transitions must
be tied to device I/O.

29

THE FUTURE IS BUILT ON BLUEROCK

Establish properties for the
applications that run on top of
NOVA.

● Use CaReSL-style techniques to
prove refinement using ghost
state and invariants.

● Extract the end-to-end proof
(independent of SL) using Iris
adequacy.

If you want a operational
specification of only NOVA, you can
instantiate spec init with an
appropriate model.

spec
init ⊢ c++ prog.init -* wp_cpp prog.main

spec
init ⊢ nova_state -* elf user.bin -* wp_nova_ec ...

spec
init ⊢ physical_state -* wp_arm boot

System
Refinement

Use adequacy to extract a standard
operational refinement proof.

nova_ok

cpp_ok

app_ok

NOVA

Use the proof of NOVA.Framing preserves the
specification.

30

THE FUTURE IS BUILT ON BLUEROCK

Establish properties for the
applications that run on top of
NOVA.

● Use CaReSL-style techniques to
prove refinement using ghost
state and invariants.

● Extract the end-to-end proof
(independent of SL) using Iris
adequacy.

If you want a operational
specification of only NOVA, you can
instantiate spec init with an
appropriate model.

spec
init ⊢ c++ prog.init -* wp_cpp prog.main

spec
init ⊢ nova_state -* elf user.bin -* wp_nova_ec ...

spec
init ⊢ physical_state -* wp_arm boot

System
Refinement

Use adequacy to extract a standard
operational refinement proof.

nova_ok

cpp_ok

app_ok

NOVA

Verify the userspace binary
against spec init.

Verify source code assuming
compiler correctness.

31

