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We present a formal specification for the NOVA microhypervisor that handles concurrency and architectural behaviors.
Our specification combines an operational specification for unprivileged user code with a separation logic specification
of privileged state and operations. We find that the small footprint and open world nature of separation logic makes the
specification highly modular and reasonably high level. Furthermore, we describe several uses of the specification for verifying
applications that use NOVA.
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1 INTRODUCTION
NOVA [32, 31] is a microhypervisor that provides basic services for virtualization, isolation, scheduling, and
the management of physical resources. NOVA’s microkernel-based design provides highly-efficient, low-level
mechanisms and leaves policy decisions and higher-level functionality to be developed on top of it in user
mode. At BedRock Systems, we aim to build a modern, trustworthy computing stack atop NOVA through the
pervasive use of formal methods. Achieving this goal requires a rich, formal specification of NOVA. Several key
requirements of this specification include:

(1) Two-sided [1]. It must be usable not only as the top-level specification of NOVA but also as the low-level
specification for user-mode applications running atop NOVA. In particular, we aim to prove strong safety
properties of user mode libraries and programs including behavioral refinements.

(2) Robustly Safe [11]. It must enable fine-grained reasoning about user-mode applications running atop
NOVA in the presence of arbitrary, untrusted, and malicious user-mode code (without looking into the
NOVA implementation).

(3) Modular. It must account for the behavior of arbitrary hardware interacting with the system mediated
by security-relevant input-output management units (IOMMUs/SMMUs)1.

(4) Realistic. It must support highly concurrent and parallel hardware, properly capturing subtle interleavings
exposed by the implementation. Crucially, NOVA hypercalls are rarely atomic, and interleaving hypercalls
can lead to subtle behaviors that the specification must account for.2

In this technical report, we present our approach for specifying the behavior of NOVA in the presence of
arbitrary user code. We use a combination of operational semantics and separation logic. While the individual
components that feed into this setup are not novel, their combination for an operating system specification differs
from previous operating system specification and verification approaches [18, 12].

We focus more on the NOVA object and capability systems, and less on the details of the memory subsystem,
e.g., page tables and memory accesses, which are more provisional at this point. We also leave the handling
1We assume that hardware devices account conform to standard specifications, e.g. for PCI devices, but otherwise make no assumptions
about their underlying behavior.
2Ultimately we aim to account for weak memory behaviors that are pervasive on modern platforms [24, 29, 28], though we currently leave
this as future work.
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Fig. 1. The NOVA machine (CPU) abstracts and enriches physical CPU behavior by replacing the architectural specification
of “hypervisor mode” with a “NOVAmode”. The semantics of code running above NOVA is the same as it is on the architecture
except when the architecture needs access to hypervisor mode state. When this access is necessary, the NOVA machine
describes the semantics in terms of the NOVA state.

of weak-memory behaviors as future work. We aim for this document to be self-contained, but restricting our
presentation to the kernel objects and hypercalls already precludes us from covering all components in detail.
Therefore we focus on the approach and the specification idioms and reference concrete examples that illustrate
them.

1.1 Approach
Modern hardware architectures are built around the notion of security levels with controlled behavior to privileged
state. Some behaviors are freely programmable, e.g., a fault from unprivileged code can result in a transfer of
control to a hypervisor. Others behaviors are dictated by the hardware, e.g., the address translation that occurs
during memory accesses uses privileged state to convert virtual addresses to physical addresses. A system-level
abstraction, such as NOVA, must unify both of these behaviors, providing a higher-level, uniform interface to the
underlying hardware resources. Figure 1 demonstrates how NOVA effectively replace the architecture’s state and
behaviors in hypervisor mode with abstractions where instructions are run in privileged mode with higher-level
state and behaviors.
Fully embracing the separation logic paradigm, we build a specification of the NOVA abstract machine using

ghost resources and weakest preconditions. Foregoing any purely operational characterization of NOVA, we express
the NOVA state as first-order predicates in separation logic. Leveraging separation, the specification is highly
modular, allowing us to develop portions of the NOVA state incrementally and maintain them as the NOVA
machine evolves.
We use separation logic weakest preconditions to describe the behavior of NOVA in terms of its logical state. The

logical, as opposed to functional, characterization based onweakest preconditions builds in powerful programming
features such as partiality, non-determinism, sequencing, and even general recursion “for free”. Finally, powerful
features such as invariants and logical atomicity [5, 33, 16] provide a pattern for expressing atomicity in an
interleaving semantics.
To connect the NOVA behavior to threads that NOVA runs (called execution contexts, ECs), we connect this

separation model of NOVA to an operational model of the processor that is partitioned according to privilege levels.
Unprivileged steps in this partitioned model are codified as silent steps, and privileged state is accessed through
events. The NOVA specification describes the interpretation of these privileged events usingweakest preconditions
expressed in separation logic. For example, when the user code performs a hypercall (syscall) event, the weakest
precondition parses the event and dispatches to the WP for the appropriate hypercall. Similarly, memory access
events are interpreted as WPs that use NOVA’s Memory space predicates (NOVA’s abstraction of page tables) to
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translate virtual addresses to physical addresses. Note that while the trap handlers for hypercalls ultimately run
NOVA code (which is compiled from its C++ and assembly sources), the “code” that runs on a memory access
is dictated by the hardware architecture. Because these steps are encapsulated by the NOVA abstract machine,
reasoning about these steps becomes part of the NOVA proof and gives rise to many interesting proof obligations
about concurrent page table access.

To connect this event-handler-style specification to a machine semantics, we specify NOVA’s entry point as a
higher order function (§6). This specification, which is expressed as a simple entailment, can then be chained with
other entailments to derive full system properties. Connecting with adequacy of the underlying machine logic
enables us to extract properties that are independent of separation logic (§6.2). Further connecting to refinement
proofs of user-mode applications enables extracting whole-machine refinement proofs (§7.1).

1.2 Structure
The structure of this technical report is as follows.

• §2 provides brief background on NOVA [32, 31, 30].
• §3 presents how we reflect NOVA’s kernel objects into separation logic assertions.
• §4 presents our logically atomic specifications of hypercalls.
• §5 presents how we reflect user code semantics into separation logic weakest preconditions, wp_nova_ec
and wp_nova_dev. We discuss how the weakest preconditions interact with the assertions in §3 and the
specifications in §4, as well as with NOVA’s abstractions for memory mappings (page tables) and device
mappings.

• §6 sketches the specification of NOVA’s “main” function, that is, how the NOVA’s boot process turns raw
physical resources into NOVA’s abstract resources.

• §7 elaborates on user verification using the NOVA specifications, in particular, how one can prove robust
safety and refinements.

1.3 The Coq Development
This technical report accompanies the Coq development of the NOVA formal specification. The released formal
specification focuses on the most stable parts that are crucial for verifying user-mode programs running on top
of NOVA. We will refer to various definitions with their Coq counterparts, in order to help with finding them in
the Coq development. The development comes with a README file (README.md) that describes the structure in
detail. There is also extensive documentation in the Coq files.
To facilitate exploration, the specification is organized using the following directory setup.

• machine_logic/ (bedrock.nova_interface.machine_logic) describes the assertions from themachine-
level logic that the NOVA formal specification assumes, such as byte_at for ownership of a single byte
in physical memory (§5.2).

• model/ (bedrock.nova_interface.model) encodes various NOVA types in Coq, for example kernel
object types and information, permissions, status codes, hypercall arguments, and so on.

• opsem/ (bedrock.nova_interface.opsem) contains the interface of CPU architectural semantics that
the NOVA formal specification assumes (see §5.1).

• predicates/ (bedrock.nova_interface.predicates) contains the assertions of the NOVA state and
their properties (see §3.1).

• hypercall/ (bedrock.nova_interface.hypercall) contains the hypercall specifications (see §4).
• wp_nova/ (bedrock.nova_interface.wp_nova) provides the weakest-preconditions for user code, i.e.,
wp_nova_ec (§5.2) and wp_nova_dev (§5.3).
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Fig. 2. NOVA takes ownership of the security critical components of the system and exposes them to userspace through
kernel objects. Other components of the system, e.g., hardware devices and memory regions, are passed through to userspace
to configure and manage.

It is worth reiterating that NOVA itself is under active development, and so is the formal specification. Many
features are still work-in-progress, including the specifications of address translations and page table updates (i.e.,
ctrl_pd for NOVA Memory spaces), the specifications for device mappings and lookups, as well as the handling
of weak-memory behaviors. In some places in the code we provide provisional sketches to show how these holes
could be filled, but we caution readers that these specifications are often built around general abstractions, and
will therefore fail to account for many of the lower-level details in the real system.

2 BACKGROUND ON NOVA
Following the microkernel design philosophy, NOVA only takes control of critical system resources and re-
exposes them to clients under restricted APIs. Figure 2 gives an overview of this strategy. Once booted up (by the
bootloader), NOVA will control

• all of the machine’s cores (CPUs) in hypervisor mode,3
• a subset of the main memory (DRAM) for its kernel operations (such as its own disk images, and 2nd-stage
page tables), and

• several system devices including memory management units (MMUs), interrupt controllers, and input-
output controllers (SMMUs/IOMMUs).

NOVA’s API is built around five types of kernel objects.

• A Protection Domain (PD) is a unit of protection and isolation for kernel objects. A PD manages the
capabilities to create and control other kernel objects.

• Execution Contexts (ECs), Scheduling Contexts (SCs), and Portals (PTs) are used to execute, schedule, and
support communications of user applications.

• Semaphores (SMs) are used to configure interrupts (and as a concurrency primitive).
• Memory spaces and DMA spaces manage the capabilities to set up permissions in page tables, repsectively
for main memory and devices.

3NOVA also owns kernel mode for host execution contexts.



A Formal Specification of the NOVA Microhypervisor’s ABI • 1:5

These kernel objects are accessible to user programs through capabilities [7] that are stored in NOVA spaces.
These capabilities include fine-grained permissions and can be delegated between spaces to enable highly modular,
least privilege designs.

NOVAAPIs provide hypercalls (syscall) to create (create_{pd,ec,sc,sm,pt}) and interact with (ctrl_{pd,ec,sc,sm,pt})
kernel objects as well as operations to configure hardware (e.g., assign_int and assign_dev). Other non-critical
resources, such as the CPUs running in user mode, user memory (which can be used to store 1st-stage page
tables), and non-criticial devices are passed through by NOVA and hence are controlled directly by user code.
Consequently, a user application running atop NOVA sees that the semantics of physical machine cores (in user
mode) are extended with a set of hypercalls that impose strong access control to critical physical resources.

3 REFLECTING THE NOVA STATE
We present some of the core predicates that we use to expose NOVA state in the formal specification, assuming
familiarity with various concepts from separation logic and the Iris framework [15, 16]. We derive these predicates
from the NOVA API (informal) documentation [31] which describes the various kernel objects, their state, and
the relationships between them. These assertions can be collectively referred to as simply “NOVA state” and can
be partitioned into three main categories:

(1) assertions for reflecting the properties of a kernel object (§3.1),
(2) capabilities for managing permissions on kernel objects (CAPOBJ, §3.1.1), and
(3) capabilities for managing physical system resources exposed by NOVA (§3.1.2): for memory (CAPMEM),

for input-output (CAPPIO), and for Model-Specific Registers (CAPMSR).

As a guiding philosophy, our NOVA specification focuses on the mechanisms that NOVA provides, not the
idiomatic usages of these mechanisms. Following this philosophy means that our predicates generally reflect the
first-order state described in the NOVA documentation [31]. We will discuss some of the benefits of this approach
in more detail in §7.

3.1 Kernel Objects
The NOVA state is comprised of logically disjoint kernel objects each bundling its own data and supporting its
own operations. Each kernel object is given a distinct object identifier (kobj_id) and its data is represented as a
group of separation logic assertions indexed by the identifier. For example, if sm is the kernel object identifier
of a semaphore, then the state of the semaphore is captured by disjoint assertions for its value and wait queue
which is expressed by the formula nova.sm.value sm n ∗ nova.sm.queue sm ecs. In the following, we use
meta-variables pd, ec, sc, pt, and sm in place of obj if we know the object’s type already.

Table 1 shows a selection of the predicates that the NOVA interface exposes for each type of kernel object. The
data attached to each kernel object can be classified as configuration, i.e. immutable data initialized at object
creation time, and state, which is mutable over the lifetime of the object.

Aside: Destroying Kernel Objects. As with other separation logics for garbage collected systems, the NOVA
specification treats kernel objects as persistent, i.e., once a kernel object is created it is never logically destroyed.
This choice simplifies reasoning about immutable properties of objects; however, it does not preclude the NOVA
implementation from reclaiming these resources. The obligation of the NOVA interface is to ensure that every
operation is implementable, but once objects are no longer reachable, the underlying resources can be safely
released. In the proof, the ghost state assertions exposed in the NOVA specification would still be available to
clients, but the NOVA proof will decouple the physical resources of the objects from their logical representation
thus permitting the implementation to reclaim the resources.
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Common (PD)
nova.spc.info obj i P the common configuration of obj is i

Protection Domains (PD)
nova.pd.owner pd pd_parent P pd_parent is the parent PD of pd

nova.spc.pd.{obj,hst,pio} pd s P+ s is the corresponding Object, Host or PIO space of pd

Execution Contexts (EC)
nova.ec.cpu ec c P the ec is tied to the physical CPU number c

nova.ec.kstate ec k Q the continuation of ec is k
nova.ec.call_stack ec ecs Q the call stack of ec is ecs

nova.ec.utcb_pa ec pa P the physical address of ec’s UTCB is pa
nova.ec.recall ec b Q a recall exception flag is set on ec with value b

nova.ec.reply ec c Q Q ec needs to reply (in an IPC) with the post-condition Q
nova.ec.scs ec scs E records the list of SCs that are currently bound to ec

nova.ec.regs is_guest ec q r Q represents architecture-specific register state of ec
nova.ec.ctrl_regs ec q r Q represents architecture-specific control register state of ec

nova.spc.ec.{obj,hst} ec s P s is the Object or Host space of ec (host ECs only)
nova.spc.ec.{gst,pio,msr} ec q s Q s is the Guest, PIO, or MSR Space of ec (VCPUs only)

Scheduling Contexts (SC)
nova.sc.time sc t P the sc has run for at least t ticks

Portal (PT)
nova.pt.id pt q id Q the pt has ID id
nova.pt.mtd pt q m Q the pt has MTD m
nova.pt.ec pt ec P the pt is bound to ec

Semaphores (SM)
nova.sm.kindI sm k P the sm has type k
nova.sm.value sm n E the sm has value n

nova.sm.queue sm ecs E the ecs are waiting for the sm
Table 1. Selected predicates that represent ownership of kernel object state. The middle column shows whether the assertion
is exclusive (E), fractional (Q), persistent (P), or persistent after initialization (P+).

State. The NOVA interface exposes mutable state through fractional [4] or exclusive predicates. For example,
the predicate nova.spc.ec.gst ec q s records the current Guest Memory space s of ec, which can change
over time.

gst_fractional : ∀ ec s, Fractional (fun q ⇒ nova.spc.ec.gst ec q s)

When all uses of an assertion in NOVA require the ability to update the assertion, we have opted to expose an
assertion as an exclusive assertion rather than a fractional one. For example, nova.sm.queue sm ecs is only
accessed when the list of waiting ECs is modified, so we expose it exclusively.

queue_exclusive : ∀ sm ecs, Exclusive (nova.sm.queue sm ecs)
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This is not limiting because fictional separation allows clients to derive fractional assertions on top of exclusive
ones using a simple construction.

Configuration. The NOVA specification exposes the configuration of an object using persistent assertions, i.e.,
those that, once established, hold universally [15]. For example, at creation time, a portal (PT) is permanently
bound to an execution context (EC). The NOVA interface exposes the binding through the persistent assertion
nova.pt.ec pt ec.
pt.ec_pers : ∀ pt ec, Persistent (nova.pt.ec pt ec)

The duplicable nature of persistent assertions makes them easy to share among threads.

Late Initialized Predicates. While rare, some NOVA predicates are “late initialized” meaning that they are
created in a partially initialized state, and subsequent kernel calls are needed to finish the construction of the
object. This state primarily occurs with protection domains (PDs) and arose during the decomposition of PDs in
NOVA release 22.35.0 (August 2022). When a PD is created with the hypercall create_pd, it does not yet have
an associated Object or Memory space. These spaces must be explicitly created and attached (also by more
create_pd hypercalls) to the PD after the fact. However, once attached, these spaces are permanently bound to
the PD. Consequently, assertions such as nova.spc.pd.obj and nova.spc.pd.hst are “two-stage predicates”.
The parameter s optionally carries the object ID of a space bound to the PD. nova.spc.pd.obj pd None is an
exclusive assertion and represents the fact that an Object space is not yet bound, and, implicitly, the right to
bind one to pd. On the other hand, nova.spc.pd.obj pd (Some o) is persistent, and represents that the Object
space of pd is o. Formally, this theory is exposed as:
obj_agree : ∀ pd s1 s2, nova.spc.pd.obj pd s1 * nova.spc.pd.obj pd s2 ⊢ ⌈ s1 = s2 ⌉
obj_excl : ∀ pd, Exclusive (nova.spc.pd.obj pd None)
obj_pers : ∀ pd o, Persistent (nova.spc.pd.obj pd (Some o))

3.1.1 Object Spaces & Capabilities. Kernel objects are accessed through selectors [31, §4.2], which are indices into
Object spaces which map them to object capabilities [31, §4.1.2]. An object capability is an optional pair of a kernel
object identifier and a set of permissions. The NOVA formal specification exposes this mapping as a fractional
separation logic assertion sel cap↦−−→𝑜

𝑞 Some(perms, obj) (in Coq, nova.spc.cap_at sel o q (Some (perms, obj

))) which says that, in the Object space 𝑜 , the selector sel has the permissions perms on the object with ID obj.
The NULL capability [31, §4.1.1] does not point to any object, has empty permissions, and is represented by None.

The permissions of a capability depends on the object type that the capability refers to. For example, an Object
space capability [31, §4.1.2.1] supports TAKE and GRANT permissions, while a semaphore supports CTRL_UP,
CTRL_DN, and ASSIGN [31, §4.1.2.11]. While the permissions for each object type are logically disjoint, NOVA’s
ABI exposes how these permissions are exposed as bitmasks so that object delegation, implemented by ctrl_pd,
can operate across objects of different types.

3.1.2 Hardware Capabilities. Beyond Object capabilities, NOVA also provides capabilities for managing hardware
resources:

• Memory capabilities (CAPMEM) [31, §4.1.3] to manage permissions on memory page frames that belong
to a Host, Guest, or DMA space;

• MSR capabilities (CAPMSR) [31, §4.1.5] to manage permissions on registers of an MSR space (x86-only);
and

• PIO capabilities (CAPPIO) [31, §4.1.4] to manage permissions on I/O ports of a PIO space (x86-only).
While configuration of these capabilities occurs through NOVA hypercalls, direct interaction with the underlying
resources is dictated largely by hardware. For example, NOVA code manages the virtual memory page tables
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through Memory spaces, but the address translation process that uses those tables is performed exclusively by
the MMU hardware.
The NOVA specification itself provides minimal information for the hardware behavior, delegating that

responsibility to the ISA manuals. Because of this, and the current lack of formal modeling around system-level
weak memory, the predicates that encapsulate these resources are still provisional. As an example of the difficulty
here, while all cores have a consistent view of the contents of an Object space, the weak memory behavior of page
tables and TLBs means that different cores can see different memory mappings from the same Memory space at
the same time. We believe that the view-based approach from weak-memory logics [17, 21, 6] can be used to
abstract the details of how these views might differ between cores. This approach does introduce some degree of
ambiguity into the NOVA machine’s model, but this ambiguity may, effectively, be necessary to accommodate
the broad range of behaviors that are possible on modern machines.

4 LOCAL AND PRECISE LOGICALLY ATOMIC SPECIFICATIONS FOR HYPERCALLS
Our NOVA specification is designed to capture NOVA’s state at every visible linearization point under arbitrary
usage. To support unconstrained concurrent access to resources, we express the linearization points using atomic
commits (ACs), a simplified form of Iris atomic updates [16]:

⟨𝑥 . 𝑃 (𝑥) | 𝑦. 𝑄 (𝑥,𝑦) ⇛ 𝑅(𝑥,𝑦)⟩E1
E2

Each pair of angle brackets specifies the logically-atomic effects of a linearization point, where 𝑃 (𝑥) captures the
state immediately before, and 𝑄 (𝑥,𝑦) captures the state immediately after the linearization point. The power of
atomic commits is that they can use, and temporarily violate, invariants that live in the invariant mask E1 \ E2.
After the linearization point, the remaining steps behave according to 𝑅(𝑥,𝑦), which can include more atomic
commits. Sequencing atomic commits allow us to “program” the behavior of NOVA actions in a similar way that
we would program in a high level, concurrent programming language with an arbitrary atomic construct. In this
section, we look at some hypercall specifications and how we capture their non-atomic behaviors by combining
several atomic commits in idiomatic ways.

Atomic Commits vs. Atomic Updates. The only difference between atomic commits and atomic updates is
that atomic commits do not have the “abort” or “peek” case. Since atomic commits can only be used once, the
implementation must be able to determine the appropriate time to use the commit. In practice, this prevents us
from putting physical state inside of ACs, and instead requires us to reflect the state via Iris’ authoritative ghost
construction [16, 19] so that the implementation can check the physical state and determine the value of the
ghost state. While this may seem a bit burdensome, it appears practically necessary to support the persistent
model of kernel objects. In addition, it simplifies client proofs by not forcing clients to prove an abort case.

Preconditions. The informal specifications of NOVA hypercalls [31, §5] are written in a style that emphasizes
the idiomatic usage of the interface with additional caveats describing what happens when the preconditions do
not hold. For example, in the documentation for ctrl_sm [31, §5.4.5]

Prior to the hypercall:
• If D=0 (Semaphore Up):

– SPCOBJCURRENT [sm] must refer to an SM Capability (CAPOBJSM ) with permission CTRLUP.
• If D=1 (Semaphore Down):

– SPCOBJCURRENT [sm] must refer to an SM Capability (CAPOBJSM ) with permissionCTRLDN.
To convert this specification into a formal one that is usable in arbitrary, including racy, contexts, we need
to specify the behavior when SPCOBJCURRENT [sm] could be concurrently modified. In many cases, this simply
amounts to converting the mandated “must” into a runtime check, yielding the appropriate error codes when the
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checks fail. However, there are cases where multiple checks with different errors are possible, and the informal
specification is ambiguous on which exact error code applies. In such cases, we strive to be conservative, leaving
the choice to NOVA and mandating that clients handle any possible return values. Yet, more complex scenarios
exist: for example in create_ec, a memory page is mapped and then a kernel selector is mapped; if the latter
fails, then the memory page must be unmapped, which introduces yet another linearization point into the formal
specification, even though such a linearization point is more of an implementation detail. Generally, as the
informal specification is not explicit enough, the formal specification needs to describe ambiguities as having
either non-deterministic or implementation-specific behavior, as we will see in an example in §4.3.

4.1 Checking Permissions
All NOVA hypercalls involve resolving a selector to a capability and checking its permissions. For example,
upping a semaphore [31, §5.4.5] takes a selector, resolves it to a capability, and checks that the permissions include
SM_UP. NOVA guarantees that this resolution and checking happens logically atomically, i.e., from the interface’s
point of view, if the resolution succeeds, there must have been a point in time during the hypercall execution
that the selector was mapped to a capability with the kernel object and the permissions that are checked.
The NOVA interface specifies selector resolution using the following atomic commit.

nova.resolve_sel_rights(𝑟, 𝑜, sel, 𝑄fail, 𝑄succ) :=

⟨𝑞, 𝑐. sel cap↦−−→𝑜
𝑞 𝑐 |

(). sel cap↦−−→𝑜
𝑞 𝑐 ⇛ if 𝑐 is Some(perms, obj) ∧ 𝑟 ∈ perms then𝑄succ (obj, perms) else𝑄fail⟩

⊤

Enova

where 𝑟 is the permission required for a success, 𝑄succ the continuation in the successful case (the permission
is sufficient), and 𝑄fail is the continuation in the failing case. To check the capability, we require the resource
sel cap↦−−→𝑜

𝑞 𝑐 (nova.spc.cap_at sel o q c) as both the atomic pre- and post-condition—we only need the resource
to know the capabilities, and we will not update it. Only if 𝑐 has sufficient permissions (for example, SM_UP in
CTRL_UP for a semaphore), then we proceed with the continuation𝑄succ , which typically encodes the remaining
steps of the hypercall. Otherwise, we proceed with the continuation 𝑄fail , which typically encodes the post-
condition with some error code. Note that the use of a single atomic commit for resolving the selector and
checking the permissions effectively requires NOVA to perform these actions logically atomically.

4.2 The Specification for ctrl_sm
NOVA semaphores implement the traditional concurrency primitive with up and down implemented through the
ctrl_sm hypercall [31, §5.4.5]. This hypercall resolves a selector to a semaphore and checks permissions using
nova.resolve_sel_rights, and then ups or downs the semaphore as requested. What is interesting about the
manipulation of the semaphore state is that it requires inter-thread communication.
To give a thread-local semaphore specification, we need to divide the protocol into two parts such that each

thread needs to only consult its own state and the shared state to determine how to act. The division has a disjoint
semaphore value and wait queue, and temporarily introduces invalid states where the value is positive and the
queue is non-empty. As we will see, this casting allows up to increment the value of the semaphore regardless
of the wait queue, and leaves down to reconcile the inconsistency and remove itself from the wait queue (an
instance of “helping“ [36, 16]).
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Up. CTRL_UP either increments the sm value or signals an overflow, expressed using an update to nova.sm.
value, in the specification nova.ctrl_sm.do_up.

nova.ctrl_sm.do_up(sm, 𝑄) :=

⟨𝑛. sm val↦−−→ n |
(). sm val↦−−→ (if n < SM_MAX then n + 1 else n) ⇛ 𝑄 (if n < SM_MAX then SUCCESS elseOVERFLOW)⟩⊤Enova

The specification says that the value is only updated if increment is not overflowing (n < SM_MAX). Subsequently,
the continuation𝑄 is given the status code if theCTRL_UP succeeds or if the value overflows. The full specification
nova.ctrl_sm.up_spec for CTRL_UP (Figure 3) prefixes the actual operation with a permission check by nova.
resolve_sel_rights.

Down. CTRL_DN is more complex: it puts the thread to sleep until the semaphore is available or a timeout
deadline is reached. This is broken down into two steps: waiting and finishing. First, the actual down enqueues
the EC into the end of the semaphore’s list of waiting ECs (nova.sm.queue) using nova.ctrl_sm.do_down.

nova.ctrl_sm.do_down(sm, ec, 𝑧, 𝑡,𝑄) :=

⟨ecs. sm queue↦−−−−→ ecs |
(). sm queue↦−−−−→ ecs ++ [(ec, 𝑡)] ⇛ sm_timeout(sm, ec, 𝑧, 𝑡,𝑄) ∧ sm_success(sm, ec, 𝑧, 𝑡,𝑄)⟩⊤Enova

Then, finishing occurs with either a success, which fires when the value of the semaphore is greater than 0, or
a timeout, which fires when the current CPU time exceeds the deadline. The classical conjunction connecting
sm_success and sm_timeout in nova.ctrl_sm.do_down allows the NOVA implementation to make the choice
on how the system evolves and represents a demonic choice to the caller.

sm_timeout(sm, ec, 𝑧, 𝑡,𝑄) :=
𝑡 ≠ 0 −∗

⟨ecs0. sm queue↦−−−−→ ecs0 |
ecs1, ecs2. ecs0 = ecs1 ++ [(ec, 𝑡)] ++ ecs2 ∗ later_than(𝑡) ∗ sm

queue↦−−−−→ ecs1 ++ ecs2 ⇛ 𝑄 (TIMEOUT)⟩⊤Enova

sm_success(sm, ec, 𝑧, 𝑡,𝑄) :=

⟨𝑛, ecs1 . sm val↦−−→ n ∗ sm queue↦−−−−→ ecs1 |
ecs2. 𝑛 > 0 ∗ ecs1 = [(ec, 𝑡)] ++ ecs2 ∗ sm

val↦−−→ (if 𝑧 then 0 else n − 1) ∗ sm queue↦−−−−→ ecs2 ⇛ 𝑄 (SUCCESS)⟩⊤Enova

In sm_success, the client produces the sm.value and the sm.queue ownership of an arbitrary value and queue
contents, and NOVA, in the atomic post-condition, proves that the blocked EC was at the head of the queue and
that the semaphore’s value was greater than 0. The seemingly inconsistent state is then reconciled, also in the
post-condition, by removing the thread from the wait queue and decrementing (or zeroing) the value.

Specification of ctrl_sm. To give a single, full specification to the ctrl_sm hypercall, we sequence the selector
resolution with the nova.ctrl_sm.do_up and nova.ctrl_sm.do_down specifications (shown in Figure 3). Having
a single specification is necessary to fit into the rest of the specifications (§5), but it is easy to prove the orthogonal
specifications since the caller of this code will statically know the value of args.(down).
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nova.ctrl_sm.up_spec : nova.hypercall.spec0T nova.ctrl_sm.args.t := fun caller args Q ⇒
letI* sm, _ := nova.resolve_sel_rights SM_UP caller.(caller_obj_spc) args.(sel_sm) (Q BAD_CAP)
in nova.sm.user sm ∗ nova.ctrl_sm.do_up sm Q.

nova.ctrl_sm.dn_spec : hypercall.spec0T args.t := fun caller args Q ⇒
letI* sm, _ := nova.resolve_sel_rights SM_DOWN caller.(caller_obj_spc) args.(sel_sm) (Q status.BAD_CAP) in
∀ k, nova.sm.kindI sm k �∗
nova.ctrl_sm.check_cpu caller.(caller_ec) k Q

(nova.ctrl_sm.do_down sm caller.(caller_ec) args.(zero) args.(ticks) Q).

nova.ctrl_sm.spec : nova.hypercall.spec0T args.t := fun caller args Q ⇒
if args.(down) then

nova.ctrl_sm.dn_spec caller args Q
else

nova.ctrl_sm.up_spec caller args Q.

Fig. 3. The specification of ctrl_sm combines selector resolution and permission checking with the individual specifications
for CTRL_UP and CTRL_DN. In specifications, ‘letI* x1, . . ., x𝑛 := f in e’ denotes the application 𝑓 (𝜆𝑥1, . . . , 𝜆𝑥𝑛, 𝑒).

Fairness and Timeliness. The split of the semaphore state predicates to facilitate thread local reasoning introduces
an apparently inconsistent state when the semaphore’s value is positive and thewait queue is not empty. Intuitively,
due to the sequencing of atomic commits, this inconsistent state becomes visible during the logical transition
(ghost update) during the proof, but not at stable states during the execution. To capture this property, the NOVA
interface exposes the consistency observation guarded by a fancy update.

sm_consistency : ∀ sm v ecs, nova.sm.value sm v ∗ nova.sm.queue sm ecs ⊢ |={Enova}=> ⌈ v = 0 ∨ ecs = [] ⌉

In this statement, the fancy update with the mask Enova restricts the observation to be available only when the
NOVA invariant holds, which is guaranteed to occur between all user-mode steps of the system.

4.3 The Specification for create_sc
The hypercall create_sc [31, §5.3.3] demonstrates how a kernel object can be created. The Coq specification is
given in Figure 4. To create a general kernel object, one needs:

• a capability with appropriate permission (e.g., PD_CREATE_SC) to the PD that the new object will belong
to, and

• a blank selector in the caller’s PD to store the resulting capability.

Additionally and specifically for SC creation, we need to bind the new SC to an EC (its bound_ec), so the specifi-
cation requires that the input selector args.(sel_bound_ec) has the permission EC_BIND_SC. If successful,
the hypercall will have created a new SC with capabilities SC_DEFINED (which includes all permissions for SCs)
stored in args.(sel_target_sc).
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nova.create_sc.spec : nova.hypercall.spec0T nova.create_sc.args.t := funI caller args Q ⇒
let Q_bad_cap := Q status.BAD_CAP in
letI* pd, _ :=

nova.resolve_sel_rights PD_CREATE_SC caller.(caller_obj_spc) args.(sel_owner_pd) Q_bad_cap in
letI* bound_ec, _ :=

nova.resolve_sel_rights EC_BIND_SC caller.(caller_obj_spc) args.(sel_bound_ec) Q_bad_cap in
letI* bound_ec_type := ec.assert_nonlocal bound_ec Q_bad_cap in
letI* := create_ec.args_check args Q in
let Kcreate := create_sc.success pd bound_ec args in
letI* o_sc, status :=

nova.create_sel_cap caller.(caller_obj_spc) args.(sel_target_sc) SC_DEFINED Kcreate in
letI* := do_schedule bound_ec o_sc in
Q status.

Fig. 4. The specification of create_sc.

The specification for creating new capabilities is expressed using the following atomic commit.

nova.create_sel(𝑜, sel, 𝑟𝑠,𝑄succ, 𝑄) :=

⟨𝑐. sel cap↦−−→𝑜
1 𝑐 |

𝑟, 𝑐′ .

if 𝑟 =MEM_OBJ ∨ 𝑟 =MEM_CAP
then 𝑐′ = None ∗ sel cap↦−−→𝑜

1 𝑐
else
if 𝑐 is Some( )
then 𝑐′ = None ∗ 𝑟 = BAD_CAP ∗ sel cap↦−−→𝑜

1 𝑐

else 𝑟 = SUCCESS ∗ ∃obj. 𝑐′ = Some(obj, 𝑟𝑠) ∗ sel cap↦−−→𝑜
1 𝑐

′ ∗𝑄succ (obj)

⇛ 𝑄 (𝑐′, 𝑟 )⟩ ⊤

Enova

If sel does not point to a NULL (blank) capability, the creation fails with BAD_CAP. Otherwise, the creation can
fail if NOVA runs out of memory for the capability (MEM_CAP) or the object itself (MEM_OBJ).4 In the case
of a success, the resources are given back to user mode in 𝑄succ . Providing these resources inside the atomic
post-condition is crucial because immediately after the atomic step is taken, other threads can begin using the
mapping. Specifically, learning the resources later would prevent us from proving robust safety (§7.3).

Multiple Unordered Steps with Parallel Atomic Commits. The general approach of using ACs scales to operations
on an arbitrary amount of state, but guaranteeing atomicity across multiple objects is expensive, e.g., by using
locks, and is therefore not tractable within NOVA. Thus the specification of hypercalls, such as create_sc, that
operate on multiple objects uses multiple atomic commits. However, the NOVA specification [31, §5.3.3] does
not describe an order for the various checks or even the way multiple errors are resolved. For example, in
create_sc above, permissions are checked for selectors to both pd and bound_ec without a specified order. In the
specification for create_sc (Figure 4), we have exposed an implementation-specific order for the operations: first
the permissions are checked, for pd before bound_ec, so they can fail with BAD_CAP, and then the capability is
created, so it can then fail with MEM_CAP or MEM_OBJ.

4NOVA’s approach of encapsulating memory management makes providing more detailed information about allocation failures difficult, and
is something that we leave for future work.
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To be faithful to the NOVA’s informal specification, the formal specification should say that all permissions are
checked in an unspecified order using separating conjunction:

∃𝑄1, 𝑄2. nova.resolve_sel_rights(𝑟1, 𝑜1, 𝑠1, 𝑄1 ◦ ERR, 𝑄1 ◦OK) ∗
nova.resolve_sel_rights(𝑟2, 𝑜2, 𝑠2, 𝑄2 ◦ ERR, 𝑄2 ◦OK) ∗
(∀𝑟1, 𝑟2. 𝑄1 (𝑟1) −∗ 𝑄2 (𝑟2) −∗
match 𝑟1, 𝑟2 with

| ERR 𝑒1, ERR 𝑒2 ⇒ 𝑄fail (𝑒1) ∧𝑄fail (𝑒2)
| ERR 𝑒1, _ ⇒ 𝑄fail (𝑒1)
| _, ERR 𝑒2 ⇒ 𝑄fail (𝑒2)
|OK 𝑟𝑒𝑠1,OK 𝑟𝑒𝑠2 ⇒ 𝑄 (𝑟𝑒𝑠1, 𝑟𝑒𝑠2)
end )

Here, the separating conjunction acts like a local parallel composition operator for atomic commits, requiring the
user to reason about the two operations occurring in either order and giving the implementation the freedom to
perform the operations in either order as well.
While useful, this pattern introduces subtle amounts of non-determinism which our specification does not

yet eliminate. Consider the error conditions on create_sc [31, §5.3.3] again. If 𝑄1 is applied to ERR MEM_CAP and
𝑄2 is applied to ERR BAD_CAP, then the informal specification does not specify what the resulting error code is.
A conservative specification (as ours is) allows both return codes, but this additional flexibility afforded to the
NOVA implementation permits NOVA to leak information through this channel, though the implementation
does not do this in practice. A minimal remedy to this leak would be to specify that the choice on how to resolve
the error code is unspecified but implementation defined and fixed for any given implementation of the NOVA
specification. Formalizing this simply involves an extra boolean that could be a pure value exposed by the NOVA
specification. Following this approach, the first branch in the match could be re-written:

| ERR 𝑒1, ERR 𝑒2 => 𝑄fail (if nova.create_ec_resolve_error then 𝑒1 else 𝑒2)
This pattern can easily be generalized to support more complex information exposing a pure Gallina function
over the two error codes in the NOVA specification.

In practice, we believe that the sort of information leakage that this refactoring removes is somewhat negligible,
as many other implementation choices within NOVA can leak the same sort of information and are much more
difficult to address. For example, fine grained atomics, hardware level speculation, and micro-architectural details
can all influence the behavior in NOVA in observable, but very difficult to quantify, ways. What distinguishes
this leak from these more subtle ones is that it is observable with purely sequential code and so can be addressed
in this simplified style.

4.4 Discussion
We have found that a small-footprint specification enabled by separation logic is quite modular from other
specifications and even the NOVA state that backs unrelated kernel objects. Consequently, we have been able
to adapt the specifications, and even the proof, of logically separated pieces while other portions of the NOVA
implementation have changed. For example, NOVA release 22.35.0 decomposed monolithic protection domain
objects into 5 separate space objects, but left the capability structure, i.e. obj cap↦−−→ 𝑐 , intact. As a result, specifications
and proofs concerning capabilities needed no adjustment.

Most importantly, the specifications precisely capture all possible visible interferences that can happen during
a hypercall, including both those from trusted code (i.e., NOVA and its verified applications) and those from
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untrusted code (e.g., guest OSes). While this complicates the specifications, for trusted-code applications that
follow more disciplined accesses to resources, it is easy to derive simpler specifications on top of the precise ones.
On the other hand, the precise specifications are more expressive and should enable us to prove properties that
concern untrusted user code. We will sketch how to achieve both kinds of properties in §7.
There are still several subtitles about the NOVA specification that are not captured informally nor formally.

Chief among these is the handling of memory allocation. The NOVA specification allows hypercalls to fail due to
out-of-memory conditions, but there is no reasoning principle about memory usage. Indeed, this is difficult due
to implementation details—such as fragmentation, which are influenced by the exact allocation policies.
Hypercalls returning an out of memory error can be dealt with in user mode in many cases, but not all. For

example, the ctrl_pd hypercall has the following explanation [31, §5.4.1] of the MEM_CAP error:
The PD to which the space referred to by SPCOBJCURRENT [dst] belongs had insufficient memory
resources for allocating the storage required for granting all destination capabilities. This consti-
tutes a partial failure of the operation, because all destination capabilities up to the first allocation
failure have been granted.

While this form of failure is easy to capture using parallel commits, the overall reasoning principle provided
by such a specification is rather weak, because user mode has no means to reason about the state after a batch
operation that might have partially succeeded. In this case, strengthening the specification, both informal and
formal, seems necessary.

5 SPECIFYING THE BEHAVIORS OF THE NOVA MACHINE
The hypercall specification represents a library-like view of NOVA where unmodeled user code invokes NOVA
through the hypercall API. However, fully describing NOVA’s behavior, e.g., with respect to fault handlers and
virtual memory mapping, requires going lower than that view.

In this section, we describe howwe enrich the formal specification to support interactions other than hypercalls.
This interface is lower-level and largely dictated by the CPU architecture and is therefore not discussed in detail in
the NOVA documentation [31]. Formally, it is crucial to describe and codify the behaviors of the NOVA machine,
for example, how the event portal description [31, §7.6 (AArch64), §8.6 (x86-64)] fits into the NOVA machine.
While many details are expected to be architecture specific, the NOVA formal specification aims to be architecture
parametric where possible, and therefore relies on a decomposition of the machine semantics that should soundly
abstract architectural details.

5.1 The Architectural Model
The NOVA formal specification assumes an architectural-level model of the CPU where individual instructions
are broken down into many atomic steps and interleaving is possible between instructions [8] (Figure 5). We
assume a decomposition of the CPU semantics where each step is statically classified as either unprivileged or
privileged, in a way that is independent of the state and other steps. For example,

• Reading a general purpose register is always unprivileged;
• Reading a protected register is always privileged; and
• Reading visibly unprivileged state that can be trapped by the hypervisor is privileged.

The third case can be quite subtle but occurs, for example, when monitoring the kernel page table root register
(TTBR0_EL1 on ARM and CR3 on x86) when running in kernel mode. A bit in hypervisor state controls whether a
write to this register will cause a fault. To guarantee that any modification to this register checks this privileged
bit, the decomposition fuses the permission check and the register access into a single privileged operation.
Fusing these permission checks is important because it enables hypervisor reasoning that is independent of the
semantics of user mode.
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Fig. 5. The execution of a single instruction in user mode can involve both privileged (NOVA) and unprivileged (user-mode)
steps. To account for weak memory semantics, some of these steps can interleave with one another between multiple
instructions in the same CPU’s instruction pipeline, and even with speculated instructions that may be ultimately aborted.
The behavior of privileged steps is described using WPs in NOVA’s separation logic.

The decomposed core semantics is described as the composition of two components.
• a labeled transition system (LTS) for the unprivileged semantics, and
• an event handler that satisfies requests for privileged state.

The unprivileged LTS gets direct access to unprivileged state, e.g., general purpose registers, and can manipulate
it without any interaction with the privileged component. Steps that require access to privileged state use the
event interface, e.g., requesting a memory read, or reading a control register. This decomposition is sometimes
subtle and is described in more detail in [20].

Host and Guest ECs. Since NOVA supports both host and guest ECs, the specification actually requires two
decompositions, one for each. In host ECs, “kernel mode” state is completely hidden, while for guest ECs the
same state is only hidden if it is protected by hypervisor-level controls. As an example, a guest EC can take a
user-level page fault that is serviced by the guest kernel without trapping into hypervisor mode. On the other
hand, host ECs will always trap into the privileged mode when they page fault.

Weak Memory Considerations. A limitation of the current NOVA specification with respect to weak memory
is that it does not permit user mode and NOVA-visible behaviors to interleave on the same core.5 Supporting
this without NOVA modifications would likely require a more nuanced concurrency presentation, potentially
based on dependencies [14]. In practice, we have not observed any bugs due to this behavior and believe it to be
unlikely, as it would rely on very deep speculation across multiple branches and (lightweight) synchronization
barriers. However, we recognize that making this reasoning formal is likely to be a difficult challenge moving
forward.

5.2 Weakest Precondition of NOVA ECs
The NOVA interface exposes wp_nova_ec to represent the thread local behavior of an EC. Contrary to most
“standard” WPs, wp_nova_ec is indexed only by the EC’s identifier rather than the code that the EC is running.
The “code” itself is stored in a separation logic assertion. This is useful because NOVA ECs are not always active.
For example, local ECs only run when they have been invoked via a portal call, and global ECs only run after
they have an attached SC.

To reason about wp_nova_ec, the NOVA interface exposes an introduction rule (wp_nova_ec_intro, Figure 6)
that performs a step on the unprivileged LTS and describes the behavior of the handler through separation logic.
5This consideration was pointed out by Ben Simmner.
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1 Lemma wp_nova_ec_intro ec :
2 |={⊤,Enova}=> ▷ ∃ regs k . . . , ec.regs ec 1 regs ∗ ec.kstate ec 1 k ∗
3 (∀ regs' oevt, ⌈ cpu_step regs oevt regs' ⌉ �∗ ec.regs ec 1 regs' �∗ . . . �∗
4 match oevt with (* The NOVA "handler" *)
5 | None ⇒ ec.kstate ec 1 ec.kont.ipc_tip �∗ |={Enova,⊤}=> wp_nova_ec ec
6 | Some cpu_evt ⇒
7 match arch_process cpu_evt with
8 | inl (novacall syscall . . .) ⇒ wp_nova_ec_hypercall syscall . . . (|={Enova,⊤}=> wp_nova_ec ec)
9 | inl (trap . . .) ⇒ wp_nova_ec_handle_trap . . .

10 | inl (mem . . .) ⇒ wp_nova_ec_mem . . . (|={Enova,⊤}=> wp_nova_ec ec)
11 | inr handle_arch ⇒
12 ec.kstate ec 1 ec.kont.ipc_tip �∗ handle_arch ec (|={Enova,⊤}=> wp_nova_ec ec)
13 | . . .

14 end
15 end)
16 ⊢ wp_nova_ec ec.

Fig. 6. The introduction rule for wp_nova_ec describes how the unprivileged EC state drives the behavior of the thread and
how NOVA handles the privileged events that the thread generates.

To prove wp_nova_ec ec, we need to prove that, for any atomic step cpu_step regs oevt regs' of ec, we can
start from the EC register state before the step (regs), and end at the EC register after the step (regs'). Because
the step is atomic, we can access all invariants except those internal to NOVA (in Enova). This is formalized by the
pair of fancy updates around the step that use the same masks as the atomic commits in the NOVA specification.
The step cpu_step regs oevt regs' comes from the unprivileged CPU semantics, and only concerns the

CPU internal register state. The external effects of the CPU are modularized through the event cpu_evt (in
case that oevt = Some cpu_evt), and are encoded in separation logic as either (i) the parameterized predicate
handle_arch ec Q for events that do not interact with NOVA, or (ii) one of several NOVA interface predicates
that connect the events to NOVA-controlled state. For example, some predicates are

• wp_nova_ec_hypercall captures the semantics of NOVA hypercalls, by first handling the parsing of
registers as required by the NOVA ABI [31, §7.8, §8.8], and then continuing with the corresponding
hypercall specification, such as nova.create_sc.spec or nova.ctrl_sm.spec presented in §3.

• wp_nova_ec_handle_trap handles faults and exceptions of the ec, for example executing an illegal
instruction, performing a faulting memory access, or triggering a floating point exception. NOVA han-
dles these events by performing implicit portal calls through the event base attached to the execution
context [31, §7.6, §8.6].

• wp_nova_ec_mem handles memory accesses, including address translations using the 2nd-stage page tables
set up by NOVA’s ctrl_pd [31, §5.4.1], of the ec.

5.2.1 Accessing Memory. wp_nova_ec_mem connects the EC semantics to NOVA Memory spaces. When a NOVA
EC accesses memory, it does so in two distinct steps.

(1) Hardware translates the virtual addresses that they access to physical addresses using privileged NOVA
state.

(2) Hardware routes the read or write access to the corresponding memory location or hardware device that
the address is mapped to.

While both of these steps are fully implemented by hardware, the fact that address translation is carried out
by the hardware memmory management unit (MMU) using memory controlled exclusively by NOVA makes it,
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match arch_process cpu_evt with
| . . . ⇒ . . .

| inl (mem (MemRead vaddr bits_sz rr acc_type should_trap aperm)) ⇒
letI* opte, voffset := wp_nova_ec_opte_lookup Enova mem ec is_guest vaddr bits_sz in
wp_nova_ec_mem_read opte voffset bits_sz rr should_trap accType aperm

(|={Enova,⊤}=> wp_nova_ec ec)
end

Fig. 7. The handler for “memory” reads combines address translation (wp_nova_ec_opte_lookup) and “memory” access
(wp_nova_ec_mem_read).

Definition do_mmu_vpage_to_opte mem c vpage Q : mpred :=
∃ V h,
(∃ Vd q, spc.mem.vpte_view mem c Vd V ∗ spc.mem.vpte mem vpage q h * True) ∧
(∀ opte n i, ⌈ V !! vpage = Some i ⌉ �∗ ⌈ h !! i = Some (opte, n) ⌉ �∗ Q opte).

Definition wp_nova_ec_opte_lookup E mem ec is_guest vaddr bits_sz Q : mpred :=
∃ c info page_count, ec.cpu ec c ∗
spc.mem.info mem info ∗ . . . ∗
let '(vpage, voffset) := page_offset vaddr in
⌈ vpage < page_count * PAGE_SIZE ⌉%N �∗
⌈ byte_aligned bits_sz ⌉ �∗ (* require that the access is at least byte-aligned *)
⌈ voffset + byte_size bits_sz < PAGE_SIZE ⌉%N �∗ (* check the access is within a page *)
|={E}=> do_mmu_vpage_to_opte mem c vpage (fun opte ⇒ Q opte voffset).

Fig. 8. Address translation in the NOVA specification converts virtual addresses into physical addresses using the logical
assertions that reflect NOVA Memory spaces.

logically, part of NOVA. At the architectural level, this translation is very delicate because it uses state that is
stored in memory with weak memory behavior, and relies on caches, the TLB, that must be explicitly managed by
NOVA. Futher, NOVA deliberately provides minimal abstractions around Memory spaces to ensure that address
space changes and fault handling can be as efficient as possible. For examples, architectural details such as the
structure of the page table are observable on ARM platforms due to the requirements of break-before-make [2,
§ D8.13.1].
The NOVA formal specification of each of these steps is still provisional, but we provide a high-level sketch

of how, we believe, this state can be soundly and usefully exposed to clients. The current definitions (Figure 7)
follow the two steps described above with wp_nova_ec_opte_lookup expressing the address translation, and
wp_nova_ec_mem_{read,write} capturing the “memory” access. However, even the soundness of this split
contains some subtleties because architectures guarantee some degree of “freshness” for the translation results
that are used during memory access. More information will be available in an upcoming technical report [20]
discussed at a high level in Giarrusso et al. [10].

Address Translation. wp_nova_ec_opte_lookup (Figure 8) describes how the semantics of the 2nd-stage address
translation, which relies on the page tables set up by NOVA’s ctrl_pd [31, §5.4.1], can be restricted by NOVA’s
resources spc.mem.vpte (virtual page-table entry) and spc.mem.vpte_view (CPU-local view on the virtual
page-table entry) that the user can temporarily provide during the step. In particular, the translation result opte
can only come from the set h of page table entries that are visible to the physical CPU c’s MMU. The actual shape
of h follows the properties of the assertions spc.mem.vpte and spc.mem.vpte_view, which are built on the
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Definition do_mem_or_mmio_read opa voffset bits_sz rr should_trap Q : mpred :=
match opa with
| None ⇒ (* not mapped or insufficient permissions, read fails *)

⌈ should_trap = true ⌉ �∗ Q
| Some pa ⇒ (* mapped with enough permissions *)

⌈ should_trap = false ⌉ �∗
match rr with
| IP.ReadSync r ⇒

(* for DRAM, we require [byte_at] *)
(∃ q, bytes_at (pa + voffset) (byte_size bits_sz) q r ∗ True) ∧ Q

| IP.ReadAsync tid ⇒
(* transaction tid initiated *) dev_transaction tid None �∗
(* MMIO resources needed to read *)
mmio.do_lookup pa bits_sz (DevReadAsync tid) ∗ Q

end
end.

Definition wp_nova_ec_mem_read opte voffset bits_sz rr should_trap acc_type aperm Q : mpred :=
let '(opte_aperm, opa) := spc.mem.filter_pte opte (fun aperm ⇒ allowed_read aperm acc_type) in
⌈ aperm = opte_aperm ⌉ �∗
do_mem_or_mmio_read opa voffset bits_sz rr should_trap Q.

Fig. 9. Physical addresses are resolved to memory or hardware devices (MMIO) in the system.

combined semantics of hardware and how NOVA manages page tables. These assertions follow the view-based
approach in weak-memory logics [17, 21, 6] to describe page table states, and are still work-in-progress.

Memory Access. wp_nova_ec_mem_read (Figure 9) describes how the read of a physical address proceeds using
the translation result opte. It first requires that the page table entry carries sufficient permissions to read. Then,
in do_mem_or_mmio_read, the read either requires the physical resource bytes_at if it targets main memory
(RAM), or requires other physical resources if it targets some memory-mapped input-output (MMIO) device. Both
of these cases must, in the future, deal with weak memory behaviors. This is further complicated by the fact that
NOVA delegates the cacheability attributes of pages to user mode, meaning that applications can, erroneously or
maliciously, mark devices as cacheable, including permitting speculative pre-fetching.

5.2.2 A Note about the NOVA’s Proof. Expressing the user-mode semantics and providing it as part of the NOVA
specification, as opposed to thinking of the NOVA specification as fully parametric in the hardware semantics is
important. This is because, while user-mode code has direct control of the processor, this behavior is still restricted
by hypervisor state controlled by NOVA that is invisible to user-mode code. Ultimately, that wp_nova_ec is
compatible with the hardware’s behavior under NOVA’s choice of hypervisor state is necessary to discharge the
lowest level obligations of the NOVA proof and gives rise to some of the most interesting proof obligations, such
as those concerning concurrent page table manipulation.

5.3 Weakest Precondition of Devices Exposed by NOVA
The NOVA specification exposes devices in much the same way that it exposes ECs, using a weakest precondition
that captures the device’s behaviors. This predicate is parameterized by the small step operational semantics of
the device, expressed as an LTS with a generic event signature supporting hardware register reads and writes,
interrupts, DMA accesses, and events to the outside world.
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Theorem wp_nova_dev_unfold D E dev_id :
|={E,Enova}=> ▷ ∃ s : D.(dev_state), dev_state_interp dev_id s ∗
let Q := |={Enova,E}=> wp_nova_dev D E dev_id in
∀ ev (s' : D.(dev_state)), ⌈ D.(dev_step) s ev s' ⌉ �∗
dev_state_interp dev_id s' �∗
match ev with
| None ⇒ Q
| Some (DMARequest . . .) ⇒ (* sending DMA request *) nova.dev.dma_{read,write} . . . Q
| Some (DMAResponse . . .) ⇒ (* receving DMA response *) nova.mmio.{read,write}_async_complete . . . Q
| Some (DevInterrupt . . .) ⇒ nova.dev.make_interrupt . . . ∗ Q
| Some (World io_evt) ⇒ (* device's own I/O step *) Q
| Some . . . ⇒ (* Responding to MMIO accesses *) . . .

end
⊢ wp_nova_dev D E dev_id.

Fig. 10. The introduction rule of wp_nova_dev follows the same structure as wp_nova_ec (Figure 6) and provides a way to
reason about the behavior of arbitrary hardware devices. Of particular note is the handler for interrupts raised by the device,
which NOVA forwards to interrupt semaphores through the nova.dev.make_interrupt predicate.

Figure 10 shows how NOVA wraps the device semantics to re-interpret DMA accesses and interrupt events
that are emitted by the device. The handlers for DMA accesses are quite similar to those of memory events
from ECs with the exception that the events are asynchronous. nova.dev.dma_{read,write} will perform the
SMMU address translation using NOVA assertions that capture DMA space mappings, while the corresponding
{read,write}_async_complete actions will receive the results.

Interrupts raised by the device are converted into do_up transitions that will be committed to their correspond-
ing interrupt semaphore asynchronously by NOVA. The asynchronous nature of this action is reflected in the fact
that the continuation for the device’s step is established independently of the atomic commit that resolves and
increments the semaphore. This is important because, in the implementation, interrupts may be disabled when
the device raises the interrupt. Unfortuately, this setup, as is, is unable to guarantee the delivery of interrupts,
let alone in a timely manner. Timeliness guarantees, even abstract ones like this, are very difficult to capture in
concurrent systems.

6 THE TOPLEVEL SPECIFICATION
Up until this point, we have focused on how the NOVA machine behaves in its steady state, which is generally
sufficient for verifying applications running on top of NOVA. However, to extract a full system property, we
need to connect this steady state specification to a concrete starting state of the underlying machine. In broad
strokes, we aim to do this by specifying NOVA’s boot code as a higher-order function. However, there are several
challenges that arise due to the way that NOVA starts up that make this statement subtle.

6.1 A Higher-order Specification for NOVA Startup
At the high level, a higher-order specification of NOVAwould have the form shown in Figure 11. The conclusion

of the entailment (lines 8-10) describes the implementation machine as a magic wand from the initial physical
machine resources (lines 8-9) to the weakest pre-condition of the full machine semantics (line 10). In particular,
this full machine semantics exposes all the low-level behaviors of the processor including, for example, instruction
fetches, fault and interrupt handling, multi-level page table translation, and the behaviors of MSRs. The physical
resources given to this WP must include at least
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1 Theorem nova_ok : ∀ root_image pnova,
2 (∀ root_pd root_ec root_sc init_regs,
3 (virt_mem vroot root_image ∗ ec.regs root_ec init_regs ∗
4 ⌈ init_regs.(IP) = vroot + ROOT_ENTRY_OFFSET ⌉ ∗
5 initial_root_objects root_pd root_ec root_sc ∗
6 virt_mem . . . ∗ virt_device_mappings . . . ∗ . . .)
7 �∗ wp_nova_ec root_ec)
8 ⊢ (phys_mem pnova NOVA_image ∗ ⌈ boot_regs.(IP) = pnova + NOVA_ENTRY_OFFSET ⌉ ∗
9 elf root_image ∗ phys_mem . . . ∗ device_mappings . . . ∗ . . . )
10 �∗ wp_arm_el2 boot_regs.

Fig. 11. A naïve sketch of a NOVA specification as a higher order function. This sketch does not account for many of the
subtlties that arise in booting NOVA.

• Ownership of the NOVA code and data segments loaded in memory. Here, as elsewhere, ownership makes
explicit the assumption that these resources cannot be interferred with by other system actors.

• Ownership of the ELF image for the root application that NOVA will boot afterwards.
• NOVA command line arguments [31].
• NOVA multiboot information [31, §7.1.1, §8.1.1].
• Architecture-specific state such as for PCI busses, and TPM support [31, §6.1.2].

The premise of the entailment (lines 2-7), captures the specification of the root task [31, §6], as a similar magic
wand using NOVA-level predicates. The resources on the left-hand side of the wand represent the resources
provided by NOVA, including:

• the setup of the initial root PD [31, §6.2],
• the hypervisor information page (HIP) [31, §6.3], and
• capabilities for device semaphores [31, §6.2.3.1].

These resources are documented in the NOVA documentation [31, §6] and, while verbose, we do not forsee any
difficulty specifying them. Thewp_nova_ec (§5) on the right-hand side of the wand captures the root application’s
proof obligations on the behavior of the (single) root EC.

Challenge: Hardware Devices and Concurrent Boot. If NOVA were a standard program, this simple setup would
largely work, but the actual physical system is a bit more complex, due to the pre-existing parallelism at startup.
Several key pieces that are not covered by the sketch specification in Figure 11 include:

• Hardware devices on the platform are running concurrently with NOVA. In fact, the NOVA specification
permits devices to be accessing memory during NOVA boot, just not the memory that hosts the NOVA
program or the startup image.

• While NOVA’s specification mandates that other cores must be idle, NOVA nonetheless owns their
resources in order to control them in the boot process and later.

• Similarly, NOVA will take ownership of certain platform devices such as IOMMU/SMMUs and interrupt
controllers, which are also running in parallel with NOVA’s boot process.

The concurrent execution of hardware devices is the most subtle of these problems. In the machine-level
logic, the behavior of a device would be captured as a weakest precondition that communicates directly with
other system components, e.g. the interupt controller and IOMMU. At some point in the NOVA boot process, the
interrupt controller and IOMMU will be taken over by NOVA and the device’s communication with those system
components will instead be captured by the effect handlers in wp_nova_dev. Capturing this transition requires
exposing these resources in the statement of nova_ok.
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nova.boot_state �∗ wp_nova_ec root_ec

machine.boot_state �∗ wp_arm_el2 boot_regs

nova_ok

arm.opsem

Machine logic soundness

(Iris Adequacy)

Fig. 12. The adequacy of the NOVA logic follows from the adequacy of the machine logic and the top-level specification of
NOVA (nova_ok).

6.2 (Relative) Adequacy of the NOVA Logic
In many cases, the property that we aim to derive for the system is independent of the NOVA specification and
even of separation logic. Extracting these “pure” properties requires proving adequacy of the separation logic
which is usually proved with respect to an operational model. On the surface, this seems like it might be hopeless
since the NOVA theorem itself (Figure 11) it stated entirely within separation logic. However, we can think of the
NOVA specification as establishing a form of relative adequacy. Effectively, the NOVA logic is sound as long as the
underlying machine logic is sound. Figure 12 demonstrates how this might work if the underlying machine logic
was proven sound. Note that sound logics exist at the architecture level, e.g., [26, 14], but these logics generally
focus exclusively on the CPU and ignore machine-level features such as hardware devices that are crucial for
reasoning about NOVA.

7 REASONING ON TOP OF NOVA
NOVA is a platform for running user-mode applications, it is not useful in isolation. Here we discuss how to
prove interesting properties of such applications as well as the higher-level properties that NOVA provides.
Crucially, the properties that we discuss in this section can, we conjecture, be proven on top of the NOVA
specification without needing to look back into the implementation. This is a powerful feature that justifies our
approach to writing precise specifications. While tractable in other contexts [34], proving multiple specifications
of NOVA—even when each specification is slightly simpler—would likely involve a significant amount of work,
since NOVA’s implementation contains a large amount of highly optimized, concurrent code.

7.1 Whole Machine Refinements
When reasoning about the behavior of a whole machine, we often care only about its externally visible behaviors.
For example, we might want a proof that the machine behaves like a webserver that is serving a particular website,
or acts like a database server communicating over a specific protocol. In these cases, we generally aim to prove
an operational refinement relating the IO traces of the machine to the IO traces of an operational specification,
e.g., of the webserver.
As the NOVA specifications are stated in separation logic, we follow CaReSL-style techniques [35, 9], which

involves encoding the operational specification as ghost state and maintaing a simulation of IO behaviors between
the operational specification and the implementation. That is, every time that the implementation steps with
an event, the specification’s operational model must be able to step with a corresponding event. These two
pieces, the specification ghost state and the IO simulation, allow defining a behavioral refinement invariant.
The user refinement proof then reduces to showing a wp_nova_ec for the user application while maintaining
the refinement invariant. Applying adequacy under this invariant would then allow us to extract a standard
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Fig. 13. End-to-end refinement requires multiple levels of abstraction.

refinement result between operational models. This process is illustrated in Figure 13, and requires the lemmas
app_ok, cpp_ok, nova_ok, and adequacy.

app_ok. Pragmatically, user-mode programs are written in a high-level programming language that is then
compiled to machine code6. We verify the (C++ and assembler) source program using an Iris-based program logic
against a specification of NOVA’s main() that takes the specification state (spec init), the physical program state
(represented as C++-level separation logic assertions, e.g., c++ prog.init), and the NOVA state (represented
using the predicates in §3).

cpp_ok. To connect this language-level proof to wp_nova_ec, we leverage an assumed relative adequacy
statement of the language-level logic in terms of generic machine resources that are (pragmatically) assumed by
standard compilers. For example, compilers assume that the binary they produce is correctly loaded in memory
with appropriate page permissions and that program state, e.g., stacks and the heap, are completely “owned” by
the compiler and not interfered with by other entities. Expressing the memory access properties extensionally as
atomic commits makes these assumptions NOVA-independent. However, instead of proving the ACs against the
machine semantics, we should be able to prove them against the corresponding ACs of the NOVA specification
(e.g., those in §5.2.1). For example, to capture the fact that the program is loaded, we can prove that the NOVA
state for the page tables (which are in RAM and which map virtual addresses to corresponding physical addresses)
contains the correct values.

nova_ok. We then rely on the soundness proof of NOVA, nova_ok, that transforms NOVAweakest precondition
wp_nova_ec into the physical machine weakest precondition wp_arm boot_regs.

adequacy. Finally, we can apply the adequacy theorem of the machine-level separation logic, to extract the
refinement property between the application specification and the physical machine: any externally visible
behavior of the implementation at the machine level is also a possible behavior in the specification application
semantics. The adequacy theorem assumes the verification result:

spec init ⊢ machine.boot_state �∗ wp_arm boot_regs.

6Generally, we assume the compiler is correct, and note that the assumption can be lifted with additional work using either translation
validation or a verified compiler.
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That is, if one can prove wp_arm boot_regs while maintaining the refinement invariant and starting with the
ownership of initial physical machine state machine.boot_state as well as the specification initial ghost state
spec init, then adequacy can be used to extract the refinement between the operational models.

Application to a Virtualization Stack. While we often think of specifications themselves as relatively small, this
is not always the case. At BedRock, our aim of providing a verified virtualization stack means that the top-level
specification includes a kernel-level semantics for the underlying processor architecture.
This allows us to say that the behavior of the implementation system running NOVA is a refinement of a

bare-metal system that is running an arbitrary operating system.

7.2 Deriving Idiomatic Specifications
The formal specifications of the NOVA hypercalls (§4) expose all logically atomic points in an execution to allow
for arbitrary interleavings. While crucial for some applications, these descriptions are a bit cumbersome even
if automation [22] can support some of these patterns well. Most idiomatic clients could use weaker hypercall
specifications that more closely reflect the descriptions in the NOVA informal specification [31, §5]. Separation
logic makes it easy to write these weaker specifications for the idiomatic usage of NOVA and prove them from the
stronger specifications. The weaker specifications not only gives us more confidence in the precise ones, but they
also simplify user-mode reasoning, which we have carried out across subtle changes in the NOVA specification.
These specifications will also be more robust as the NOVA interface continues to evolve to better support weak
memory reasoning.

Data-race free Capability Resolution. An example common simplification is that object spaces are idiomatically
used in a data-race free manner. In particular, while two threads may race to down the same semaphore, it is rare
that one thread downs with a selector that being updated by another thread to point to another object. Generally,
errors such as BAD_CAP are quite rare in idiomatic NOVA’s application programs. The following example Hoare
triple specification captures this idiom.

{sel cap↦−−→𝑜
𝑞 Some(perms, sm) ∗ SM_DN ∈ perms ∗ sm.user(sm) ∗ nova.ctrl_sm.do_down(sm, ec, 𝑧, 𝑡,𝑄) ∗ . . .}

user_ctrl_dn(sel, 𝑧, 𝑡)
{𝑟 . sel cap↦−−→𝑜

𝑞 Some(perms, sm) ∗ 𝑟 ≠ BAD_CAP ∗𝑄 (𝑟 )}
In contrast to the fundamental NOVA specification (Figure 3), this specification requires sequential owner-
ship of sel cap↦−−→𝑜

𝑞 Some(perms, sm) which ensures that the predicate is stable during the call. This ownership
allows us to simplify the atomic commit that performs the selector resolution and permission checking (nova.
resolve_sel_rights). We stress that such simplification is easily addressed by automation, so the main benefit
is actually readability. Other instances when threads often retain sequential ownership is in initialization pat-
terns. For example, creating a portal is often followed by setting its portal ID, and a thread retaining sequential
ownership of the selector mapping prevents (in verified programs) calls to the portal during initialization.

Language-level Specifications. Another advantage of the derived Hoare triple specification is that it is phrased
in the high-level language rather than at the (NOVA) machine level where the hypercall specs are [31, §5.2-5.5].
In essence, the specification encapsulates the cross-language call to ABI in the high-level language API (e.g.,
user_ctrl_dn). This abstraction barrier hides the subtle reasoning required when inter-operating between different
programming languages7 and has allowed us to verify many interesting user-mode programs, and fix many bugs,
without being blocked on this important technical challenge.

7Sound language inter-operation has a variety of subtlties that are still under active investigation [13, 27].
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7.3 Towards Proving Robust Safety with Untrusted Code
The usual approach to proving robust safety [25, 34, 3, 11] is to classify security-relevant state into low- vs.
high-integrity state, and to attach a protocol to the low-integrity state; then, one proves that any machine step is
compatible with those protocols for low-integrity state, i.e., given only low-integrity state, untrusted code can
take any step available to it. Generally, this setup is expressed using arbitrary program contexts. In the setup
with the NOVA specification, these arbitrary contexts show up as the universally quantified root image of an
unknown user program in nova_ok (Figure 11, line 1). Recall that the semantics of user programs is captured
by wp_nova_ec (§5). To show robust safety then is to prove the weakest pre-condition wp_nova_ec for any root
image.

By exposing NOVA’s states without any security-awareness but with precise functional correctness, we leave
the client of the NOVA specification the choice to define custom protocols/abstractions for low-integrity state
and to derive simple specifications for working with these abstractions. Then, by proving wp_nova_ec for all
possible user programs while maintaining the low-integrity protocols, the client should eventually be able to
show a robust safety metatheorem.
More specifically, one can consider all NOVA assertions as carrying precise, high-integrity state, and then

make some of them low-integrity state to give out to untrusted code by quantifying over particular values. For
example, the assertion ∃𝑐, sm cap↦−−→𝑜

𝑞 𝑐 ∗ valid(𝑐) represents a capability to an unknown but valid semaphore object
and is sufficient for any user code to apply the NOVA hypercall specification. Pushing this further, one can make
available to an untrusted application running in an EC ec under a PD pd all of pd’s kernel object resources with
low-integrity state. Then, the untrusted application can take any step, with or without involving NOVA, and still
cannot break NOVA’s internal invariants, because it is always satisfying NOVA’s specification.

Figure 14 makes this idea more concrete by sketching a robust safety invariant for untrusted code. By putting
all low-integrity state in a separation logic invariant, we allow untrusted code to access all resources so that
they can apply the logically atomic specifications, e.g., for their hypercalls. Ultimately extracting a robust safety
theorem requires that this invariant satisfies two properties. First, the invariant can be allocated from the initial
resources given to the PD. Formally,

Lemma rs_inv_alloc N E pd0 : initial_resources pd0 ⊢ |={E}=> inv N (rs_inv pd0).

And second, the invariant is sufficient to imply wp_nova_ec for the EC.

Lemma wp_ec_untrusted N pd0 ec0 : nova.ec.owner ec0 pd0 ∗ rs_inv N pd0 ⊢ wp_nova_ec ec0.

Taken together, these two properties imply that wp_nova_ec can be discharged on any initial guest code. Note
that the invariant rs_inv is very weak, and cannot be used for verifying deep correctness properties of user
applications.

8 CONCLUSION
Our specification approach models NOVA as a handler for user (and kernel) events. To describe the behavior of
NOVA modularly, we present its state as loosely coupled separation logic assertions and its behaviors through
weakest preconditions that describe the evolution of the state in response to user-mode code and hardware
devices. The behavioral specifications are captured as separation logic programs in a similar manner to the work
of [23]. We have found the expressiveness of separation logic crucial for describing the myriad of features that
NOVA employs including, e.g., dynamic object creation and shared memory interactions.

At BedRock Systems, we have been building on top of this specification for over three years and havemaintained
it through several revisions to the NOVA specification. In addition, we have completed several proofs of NOVA
code, including a “spike” that connects the entry point for ctrl_sm through NOVA’s semaphore implementation,
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Definition rs_inv pd0 :=
∃ obj0, nova.spc.pd.obj pd0 obj0 ∗ (* obj0 is the Object Space of pd0 *)
([∗list] sel ∈ selectors pd0, ∃ c, nova.spc.cap_at sel obj0 1 c ∗ valid c) ∗ (* valid capabilities *)
([∗list] int ∈ interrupts pd0, ∃ cfg, nova.sm.INTconfig sm cfg 1 ∗ valid cfg) ∗ (* valid interrupts *)
([∗list] o ∈ all_objs pd0,

match o with
| pd ⇒

(is_root pd ∨ ∃ pd_parent, nova.pd.owner pd pd_parent) ∗ . . . (* valid pd *)
| ec ⇒

∃ pd c, nova.ec.owner ec pd ∗ nova.ec.cpu ec c ∗ (* bound to valid pd and CPU *)
∃ regs, ec.regs ec regs ∗ valid regs ∗ (* valid register state *)
∃ ecs, nova.ec.call_stack ec ecs ∗ valid ecs ∗ . . .

| sm ⇒
∃ n, nova.sm.value sm n ∗
∃ ecs, nova.sm.queue sm ecs ∗ valid ecs ∗ . . . (* valid blocked ECs *)

| pt ⇒
∃ ec, nova.pt.ec pt ec ∗ (* bound to valid ec *)
∃ id mtd, nova.pt.id pt 1 id ∗ nova.pt.mtd pt 1 m ∗ .. (* valid id and MTD *)

| sc ⇒ . . . (* valid sc *)
| mem ⇒ (* valid memory capabilities *)

([∗list] vpage ∈ vpages mem, ∃ h, spc.mem.vpte mem vpage 1 h ∗ valid h) ∗ . . .

end) ∗
. . . (* more low-integrity resources *)

Fig. 14. The sketch of an invariant for proving the robust safety of NOVA. All NOVA state is embedded inside the invariant
with a guarantee that all reachable objects are valid and all of the state of valid objects exist within the invariant. This
guarantees that the specifications of all hypercalls (§4) can be discharged.

including its use of wait queues. We believe that scaling this verification out to the rest of the NOVA source code
will be subtle, but, at the source code level, seems within the reach of our current verification technology.

Beyond the source code, however, is the subtlty of interoperating with low-level hardware features. For exam-
ples, relating the C++ memory model to the underlying architectural memory model will be quite challenging.
Additionally, inter-operations with other hardware components such as MMUs, interrupt controllers, and IOM-
MUs/SMMUs will be subtle, at least in part due to the fact that precise models of these components do not yet
exist.
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