
Why memory safety is not enough

Lessons from
rewriting systems
software in Rust
Ruben Nijveld



About me

Ruben Nijveld
• Working at tweede golf since 2011
• Learned about Rust around 2013
• First commercial usage in 2017 (mapserver bindings)
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Trifecta Tech Foundation

• Januari 2022: NLNet Foundation grant for implementing a PTP prototype
• April 2022: Contracted by Prossimo (ISRG) to implement NTP in Rust
• December 2022: Contracted by Prossimo (ISRG) to implement Sudo in Rust
• August 2023: Sovereign Tech Fund (now Sovereign Tech Agency) grant for

Pendulum (NTP + PTP)
• April 2024: Trifecta Tech Foundation started
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Current Trifecta projects

• Time synchronization: Pendulum (ntpd-rs and statime)
• Privilege boundary: sudo-rs
• Data compression: zlib-rs and bzip2-rs
• Smart grid protocols: openleadr-rs
• Education - teach-rs
• Making Rust faster than C

Open infrastructure software in the public interest
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What is systems software?

“System software is software designed to provide a platform for other software”

• Generally relatively low-level software
• Relatively low overhead and high performance
• Protocols, algorithms and formats

4 / 27



Why these projects?

It has to be interesting
We’re in it for the long haul, and we want to keep our work interesting
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Why not?

Just find the projects with the most buffer overflow issues, right?
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Why not?

Pick your battles, not every project needs a rewrite

• Just rewriting in Rust is not enough
• Be careful for the negatives
‣ Communities can be split
‣ Users don’t see any changes

• Focus on the positives, those that don’t join your
effort aren’t the enemy

• Never fear a hobby project though
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Why these projects?

Finding vulnerable projects, protocols or ideas
• Few people working on it, lots of people relying on it
• A history of security issues
• Unstructured codebase
• Not just related to the Rust ecosystem
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And now…

So we found something that could use a little Rust
• Are you aware of a significant portion of the problem space?
• If not: just start trying stuff! Make it your hobby! Enjoy!
‣ Encourage people new to the problem space, even if you don’t like Rust

• Make sure to look at competing implementations (beware of licenses though)
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Your unique selling point

Think about what would sell your new implementation

• Something other than: Rust brings
memory and type safety

• We Rust programmers care about type
safety a lot

• This is not what your users care about
though
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Focus on security

Maybe your implementation focuses on being more secure?

• Think beyond just the memory and type
safety

• In sudo-rs: Which features are really
needed? Lower attack surface?

• In ntpd-rs: Focus on Network Time Security
and have stricter defaults
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Focus on performance

Maybe your implementation focuses on being more performant?

• Maybe a little unsafe can perform
better?

• Balance security, usability and
performance

• Make sure you benchmark what you are
claiming

• In zlib-rs: Use SIMD instructions, focus
on relative performance
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Focus on stability

Maybe your implementation focuses on being stable in some way?

• Think about memory leaks
• Stable API: make sure your API does not need

to change for a long time
• In ntpd-rs: Worked toward 1.0, stability

guarantees
• In zlib-rs: Existing C zlib interface as primary

way to interact
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Find your own focus

Your focus is your strength, and also helps others
• Be the change you want to see
• Help other implementations, document what works and what doesn’t
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Make it the best project ⭐ ⭐ ⭐ ⭐ ⭐

• From here on out, iteration is needed
‣ On your code
‣ On your unique selling point

• Take some time, no rush
• Some points of attention:
‣ Documentation
‣ Dependencies
‣ Distribution
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Documentation

• As a Rust user we clearly make the best ever API documentation
• You obviously have #![forbid(missing_docs)] and

#![forbid(clippy::undocumented_unsafe_blocks)]

• So every public interface is expertly document, including tested examples
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Documentation

• Your users know way less than you do
• Just API docs with rustdoc is not enough
• Examples and tutorials
• High level guide
• Reference guide
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Dependencies

• Dependencies solve problems so you don’t have to
• The Rust ecosystem offers a lot of libraries these days
• New projects: use them! All of them!
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Dependencies

Dependencies are a risk as well

• A burden risk
‣ Don’t take on more dependencies than

you need
• A trust risk
‣ Only take on well known dependencies

with trusted maintainers
• A dependency’s goals might not always

align with yours
• Make sure you take these into consideration
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Dependencies

• Trust is nice, verify is better
• You can use tooling like cargo vet to share review load for dependencies
• Dependencies can also be part of your distribution story
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Dependencies and Debian packaging

• Targeting Linux? Debian-based
distributions will be large part of your
userbase

• Debian packages each of your
dependencies as individual source
packages

• Only one version of a package will be
available in a Debian distribution
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Distribution

• Just publish on crates.io right?
• Your users aren’t Rust users, and don’t need or want a Rust compiler
‣ cargo install is not a distribution mechanism

• If your intent is to replace an existing piece of software:
‣ Using your software should be just as easy as the one you are replacing

• (Linux) distributions and other downstream maintainers are your friends!
‣ Rust packaging tools often prefer to use crates.io as a source

• The biggest impact can be made by supporting the widest ecosystem
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Whoops, my crate name is not available

• No need to get it right the first time, you can always rename
• People are horrible at naming things
• Just ask, quite often people will respond
• It helps if you have something to show
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You need to build up trust

• In the end a lot of what we’re doing is about people
‣ Users
‣ Contributors
‣ Dependency maintainers
‣ Downstream maintainers

• Show that you are a reliable partner
• Have a way to handle security issues
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So what have we done?

• We picked the project that needed RIIR treatment
• We found something to focus on that uniquely identifies our project
• We iterated and created the best software package ever
• We made the best documentation ever
• We limit, trust and verify our dependencies
• We distribute our software to the widest audience
• We’ve communicated so well that everyone trusts us
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So what have we done?

Just download my software already!
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Thank you!

Any questions?
E-mail ruben@tweedegolf.com
Tweede golf https://tweedegolf.nl/
Trifecta https://trifectatech.org/
ntpd-rs https://github.com/pendulum-project/ntpd-rs/
sudo-rs https://github.com/trifectatechfoundation/sudo-rs/
zlib-rs https://github.com/trifectatechfoundation/zlib-rs/
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