
Advent of Compression
Writing a working BZip2 encoder in Ada from scratch in a few days

FOSDEM 2025

Dr Gautier de Montmollin

https://alire.ada.dev/crates/zipada

https://alire.ada.dev/crates/zipada


Motivations:
 fun / challenge / warm-up for Advent of Code 2024

 fill a gap in the Zip-Ada compatibility grid:

Expectations (low):
 BZip2 compresses few kinds of files better than, for instance, LZMA

 BZip2 compression scheme is mostly “mechanical”: on most steps, there is 
only one single possible encoding.

 BZip2 is a weakened version of BZip1 (old patent issues)

Results: two very good surprises!

Format Format # Compress Decompress

Store 0 v.22 v.1

Shrink 1 v.22 v.1

Reduce 1 .. 4 2 .. 5 v.29 v.1

Implode 6 never v.1

Deflate 8
v.50

(v.40-49: limited) v.1

Enhanced Deflate 9 never v.30

BZip2 12 v.60 v.36

LZMA 14 v.51 v.47

PPMd 98

Zstandard 93

Zip-Ada



BZip2 is very simple.

1. Input: a “large” block of data (<= 900 KB)

2. The block is processed “off-line”

 Run Length Encoding (2x)

 Burrows-Wheeler Transform (block-sorting)

 Move To Front

 Entropy coding (Huffman)

3. Output of the compressed block.

procedure Encode_Block (dyn_block_capacity : Natural_32) is
...

begin
-- Data acquisition and transformation (no output):
RLE_1;
BWT;
MTF_and_RLE_2;
Entropy_Calculations;

-- Now we output the block's compressed data:
Put_Block_Header;
Put_Block_Trees_Descriptors;
Entropy_Output;

end Encode_Block;



Run Length Encoding #1

a       ⟶ a 1 ⟶ 1

aa      ⟶ aa 2 ⟶ 2

aaa ⟶ aaa 3 ⟶ 3

aaaa ⟶ aaaa[0] 4 ⟶ 5

aaaaa ⟶ aaaa[1] 5 ⟶ 5

aaaaaa ⟶ aaaa[2] 6 ⟶ 5

… … ⟶ 5

259 ⟶ 5



Burrows-Wheeler Transform

Mary had a little lamb, its fleece was white as snow
ary had a little lamb, its fleece was white as snowM
ry had a little lamb, its fleece was white as snowMa
y had a little lamb, its fleece was white as snowMar
had a little lamb, its fleece was white as snowMary

had a little lamb, its fleece was white as snowMary
ad a little lamb, its fleece was white as snowMary h
d a little lamb, its fleece was white as snowMary ha
a little lamb, its fleece was white as snowMary had

…

a little lamb, its fleece was white as snowMary had
as snowMary had a little lamb, its fleece was white
fleece was white as snowMary had a little lamb, its
had a little lamb, its fleece was white as snowMary
its fleece was white as snowMary had a little lamb,
lamb, its fleece was white as snowMary had a little
little lamb, its fleece was white as snowMary had a
snowMary had a little lamb, its fleece was white as
was white as snowMary had a little lamb, its fleece

…

Sorting

Reversible!



Burrows-Wheeler Transform (continued)

Output of bzip2-encoding.adb (excerpt):

2)_____FPUAAEOOA(     E  _______'_'''''_'''''''''__________________________   ___( 8)  ____  __  
________RSGAESREIIOUI I   EE ( 6)  ( 4)   ( ______       ( 8)( 10)  ___   ( 6)__ ______    "  _______-
_______( 8)( 8)( 4)( 10) ( 8)        ( 4)( 4)( 8)( 8)( 8)______  _   _  .. 
HOIUURNUWWCWNWWWWNIMMMMMMMMMMMMMI      OOEOUIRNCCI  NFFFNIII___________   ...         ___( 6)( 10)( 
12)( 8)( 8)( 8)( 8)( 4)( 2)( 4)( 6)( 6) ( 8)     ___     ____________LCRRRRRRP BOOA.. ...( 4)( 0)( 4)  
(((( ( (   (._______ _________EO''_ __   __ BTTT   R  SBBBBBBB      -( 2)  ( 0)  ( 0)ENNTTTPT___ -( 
0)BBBBBBBBBBBBB-
'11EkkkeeeeeeeeeEEE22E0EEEEdrrddldrrllddlllrdllllllllleeeeeleellllreledlllrlddlrellled0kkkdkkkkNNNeryer
erryxxxxxxtFeettthhteFgtgthFtghtFFdddrrNNNhhhhnnnnnnttttttttttttttttttttttttttttttttteeeettttttttttedee
eyyywwwwlllllllllllllyyyyyyyyyyyyyyyyyyyyyyeddcccslsslsssldddeeeesss22eeeeeetmmmdddddttttooeeeeeeeekmmk
mkttteeetttrrttennntttttthhtw22ggeeetttyyyyggggggnyyyttdddFFrrrrtrtttrrrrtrtttrrrrtrrrrryyyyyyygggdddte
eeeeeeeeettteeeeeemmgggyyyyytgtgyrrrrrrreeeeeeodgttttgtgttteeekkketxyyxsettsennnnnnnnnnnnnnnnhhheedddnn
nxFFFeeenttttwwttttttwwttttwwwwtttxnnnnnlllllbtttttgggggggrrrnnkkkkkkkknhnhtttqqqnttnrqtqtntrrnnnrrttff
fffffffffffffxxxxxxxxxxxxxxxxxxeeyyyyyyyyyyyyyyyyyyyyyyyyytttccrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrcrrsssssss
sssssssssssssssssssssssssskkkkkdkkddkkkddkkktfffffffffftftftttrrrrrrrtttxxmplllplpppleekmeefllllllfrffl
lllllfrfrllllllfflffffffffrfrffrlllllffllllffffffflllrlrttttttttttttttttllllllsslssslllssllttttnnffffff
fffffffffffeeeeeeeeeeeeeeeeeetttttttttttttttttttttttttttttttttttttttyyyyyynnrrryyppptttgggppeeeeppppptt
tttttbbbbbkkkkkmmmmmmttttlltttootottteekkkktkkkkkpknpppkknkpkkkkpppppppppppppeeeffffyyffyffttttttttllll
lllcnhhnchceeqqqnnnnnnnnnnnnnnnnnnnnnnnnnnnrrrrrrrrrreeeeeeeeeeeeee 



Move To Front

Card: 6
Index: 6

Card: 4
Index: 5

Card: 9
Index: 9

Card: 6
Index: 3



Final step: entropy coding with Huffman trees

Not mechanical. You have up to 6 trees, freely defined, that 
can be freely chosen for each group of 50 symbols (the 
output of Move To Front)

⟶ Room for optimization!



Results – first surprise

NB: BZip2 is very good with (at least) human-written texts and source code.

Zip archive, BZip2 only:

Zip-Ada 

wins bigly !!!



Zip archive, multi-format (for Zip-Ada, Preselection_2):

Before:

After:

Results – second surprise

Zip-Ada wins  

here too !!!



Benefits of Ada

Data compression is very difficult to debug, sometimes impossible.

⟶ Ada does its best to help you doing things right the first time.

Indirect benefit : you can focus on the algorithms.

Here, some ranges picked up from the code (bzip2-encoding.adb):

subtype Bit_Pos_Type is Natural range 0 .. 7;

type Buffer is array (Natural_32 range <>) of Byte;

subtype Offset_Range is Integer_32 range 0 .. block_size - 1;

subtype Max_Alphabet is Integer range 0 .. max_alphabet_size - 1;

type MTF_Array is array (Positive_32 range <>) of Max_Alphabet;

subtype Entropy_Coder_Range is Integer range 1 .. max_entropy_coders;

subtype Alphabet_in_Use is Integer range 0 .. last_symbol_in_use;

type Huffman_Length_Array is array (Alphabet_in_Use) of Natural;

type Count_Array is array (Alphabet_in_Use) of Natural_32;

subtype Selector_Range is Positive_32 range 1 .. selector_count;

type Cluster_Attribution is array (Positive range <>) of Entropy_Coder_Range;

type Value_Array is array (Positive range <>) of Natural;

in_use_16 : array (Byte range 0 .. 15) of Boolean := (others => False);

Data 
dependent!

More @ https://gautiersblog.blogspot.com/2024/11/writing-bzip2-encoder-in-ada-from.html

https://gautiersblog.blogspot.com/2024/11/writing-bzip2-encoder-in-ada-from.html

