
Multiword Arithmetic and Parallel Computing

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/∼jan
https://github.com/janverschelde

https://www.youtube.com/@janverschelde5226
janv@uic.edu

Ada devroom, FOSDEM 2025, 2 February

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 1 / 12



Multiword Arithmetic and Parallel Computing

1 Introduction
robust numerical algorithms
multiple double arithmetic

2 Multiword Arithmetic
an error free summation
vectored inner product

3 Parallel Computation
multithreading to reduce overhead
staging data for matrix multiplications

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 2 / 12



introduction

An algorithm is robust if it does not fail for small perturbations of
degenerate inputs.

Floating-point arithmetic with 64-bit doubles can be extended to gain
more accuracy than what only hardware arithmetic gives.

Algorithms to extend 32-bit floating-point arithmetic originated in
the late sixties [Dekker, Numerische Mathematik 1971].
The arithmetic is provided in software packages such as

I QDlib [Hida, Li, Bailey, 2001], and
I CAMPARY [Joldes, Muller, Popescu, Tucker, 2016].

Point of this talk: define reference code for GPU acceleration.

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 3 / 12



multiple double arithmetic
A multiple double is an unevaluated sum of nonoverlapping doubles.

Take 64 random complex numbers on the unit circle.
The 2-norm of this vector is 8, computed with multiple doubles:

double double : 8.00000000000000E+00 - 4.46815747097839E-32
quad double : 8.00000000000000E+00 + 8.23258305145073E-65
octo double : 8.00000000000000E+00 - 5.56764060802733E-128
hexa double : 8.00000000000000E+00 - 1.54394135726410E-257

Cost overhead:

add mul div avg
2 20 23 70 37.7
4 89 336 893 439.3
8 269 1742 5126 2379.0

16 925 11499 33041 15155.0

The table lists the number of operations with doubles for a multiple
double addition (add), multiplication (mul), and division (div).

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 4 / 12



power series arithmetic
motivation for multiple double precision

exp(t) =
d−1∑
k=0

tk

k !
+ O(td).

Recommended precision to represent the series for exp(t) correctly:

k 1/k ! recommended precision eps

7 2.0e-004 double precision okay 2.2e-16
15 7.7e-013 use double doubles 4.9e-32
23 3.9e-023 use double doubles
31 1.2e-034 use quad doubles 6.1e-64
47 3.9e-060 use octo doubles 4.6e-128
63 5.0e-088 use octo doubles
95 9.7e-149 use hexa doubles 5.3e-256

127 3.3e-214 use hexa doubles

eps is the multiple double precision

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 5 / 12



an error free summation

Assuming all 64-bit doubles have the same exponent,
we work with 52-bit integers (fractions of the doubles).

Split a vector of doubles, add the parts, and then fuse the result:

=

+

+

+

= =�� b· · ·b b· · ·b

- - 0· · ·0 0· · ·0

- - + +0· · ·0 0· · ·0

...
...

...
...

- - + +0· · ·0 0· · ·0

If the number of additions does not exceed some threshold,
then we have sufficiently many zero bits left at the end of the numbers
to represent the result exactly, without any error.

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 6 / 12



vectored inner product with double double arithmetic

Given are vectors x and y both of length n, of double double numbers,

we compute
n∑

k=1

xk ? yk , where ? is the double double multiplication.

The double double xk is represented by (xhi
k , x lo

k ), where the high
double xhi

k and the low double x lo
k of xk are splitted in quarters:

(

xhi
k

xk ,0, xk ,1, xk ,2, xk ,3,

x lo
k

xk ,4, xk ,5, xk ,6, xk ,7).

After splitting also yk , we compute in double arithmetic:

s0 =
n∑

k=1

xk ,0yk ,0, s1 =
n∑

k=1

xk ,1yk ,0 + xk ,0yk ,1, si =
n∑

k=1

i∑
j=0

xk ,jyk ,i−j ,

for i = 2, . . . ,7, add s0 + s1 + · · ·+ s7 in double double arithmetic.

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 7 / 12



balanced quarters of doubles

To examine the computational efficiency, random 64-bit doubles
are generated with a fraction of 52 bits in following pattern:

1 bb · · · b︸ ︷︷ ︸
12 bits

1 bb · · · b︸ ︷︷ ︸
12 bits

1 bb · · · b︸ ︷︷ ︸
12 bits

1 bb · · · b︸ ︷︷ ︸
12 bits

, b ∈ {0,1}.

Splitting such double into four leads to doubles with fractions

1b · · · b 00 · · · 0 00 · · · 0 00 · · · 0,
00 · · · 0 1b · · · b 00 · · · 0 00 · · · 0,
00 · · · 0 00 · · · 0 1b · · · b 00 · · · 0,
00 · · · 0 00 · · · 0 00 · · · 0 1b · · · b.

By virtue of the placement of the ones in the random fractions,
all quarters have fixed exponents, e.g.: 0, −13, −26, −39.

All doubles in a multiple double are generated according this pattern.

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 8 / 12



results

Computing 1,024 times
6144∑
k=1

ak ? bk in increasing precision:

ordinary speedup vectorized

cpu time overhead
ordinary

vectorized
cpu time overhead

16d 40s 780ms 6.3x 4.3x 9s 491ms 6.2x
8d 6s 428ms 3.3x 4.2x 1s 520ms 4.8x
4d 1s 977ms 12.x 6.2x 318ms 4.6x
2d 158ms 13.x 2.3x 69ms 2.3x
1d 12ms 0.4x 30ms

Ran on an Intel Xeon 5318Y Ice Lake-SP, up to 3.40GHz,
256GB of internal memory at 3200MHz, GNU/Linux, Microway 2024,
compiled with GNAT 12.2.0, flags -O3 -gnatp -gnatf.

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 9 / 12



a high level parallel computation

It takes 9 seconds for 1,024 inner products in hexa double precision.

Wall clock time: 9s 308ms, with 85ms for generating the vectors.

In a multithread computation, every thread does one inner product.

On two 24-core Intel Xeon 5318Y Ice Lake-SP, up to 3.40GHz,
256GB of internal memory at 3200MHz, GNU/Linux, Microway 2024,
compiled with GNAT 12.2.0, flags -O3 -gnatp -gnatf,
the wall clock time is 293 milliseconds, using 96 threads.

Comparing the 293 milliseconds to the 318 milliseconds with one
thread in quad double precision, we can quadruple the precision and
compute as fast as in quad double precision, using 96 threads,
achieving quality up.

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 10 / 12



the work crew model

A computation performed by three threads in a work crew model:

- time

set up
thread 0
thread 1
thread 2

clean up

If the computation is divided into many jobs stored in a queue,
then the threads grab the next job and compute the job.

The jobs are define by by tasks. Updating the index to the current job
happens in a critical section, implemented in the GNAT.Semaphores
package, see AdaCore Gem #81 by Pat Rogers.

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 11 / 12



conclusions

Postponing renormalizations of multiple doubles benefits the efficiency.

The code is at https://github.com/janverschelde/PHCpack.

PHCpack is a software package to solve polynomial systems with
homotopy continuation methods, available as an alire crate.

The convolutions
n∑

k=1

i∑
j=0

xk ,jyk ,i−j allow to rewrite the inner products

in multiple double arithmetic as matrix multiplications in double
precision floating-point arithmetic, to prepare for better acceleration
with graphics processing units, in particular tensor cores.

Jan Verschelde (UIC) Multiword Arithmetic & Parallel Computing FOSDEM 2025, 2 February 12 / 12

https://github.com/janverschelde/PHCpack

	Introduction
	robust numerical algorithms
	multiple double arithmetic

	Multiword Arithmetic
	an error free summation
	vectored inner product

	Parallel Computation
	multithreading to reduce overhead
	staging data for matrix multiplications


