
Annanay Agarwal
Senior Software Engr.
AI/ML

Auto-instrumentation for GPU performance
using eBPF

FOSDEM ‘25

Marc Tuduri
Staff Software Engr.
Beyla

Nikola Grcevski
Principal Software Engr.
Beyla

��

1. Understanding the problem

a. Current GPU monitoring solutions

b. GPU programming model

2. Proposed solution using eBPF and Grafana Beyla

a. Calls instrumented so far

b. Future plans

3. Q&A

AGENDA

* this is not an endorsement

Hello Randy!

Team A

Scheduler

Team C

Model Training Live Inference

Team A

Team A

Scheduler

Team CTeam A

Model Training Live Inference

https://ai.meta.com/research/publications/the-llama-3-herd-of-models/

launch kernel

https://researchcomputing.princeton.edu/support/knowledge-base/gpu-computing#GPU-Job-Statistics

https://researchcomputing.princeton.edu/support/knowledge-base/gpu-computing#GPU-Job-Statistics

CPU is the orchestrator for GPU tasks
● Kernels are launched from the CPU

○ How many kernels were launched?
○ What are the dependencies between different kernels?

● Memory is allocated and deallocated from the CPU side
○ How much memory was allocated? Was it deallocated?
○ Data transfers are usually done async while other computational tasks

are underway.

Team A

Scheduler

Team C

Model Training
Live Inference

Team AKEEP CALM
AND

SET UP HARDWARE
METRICS!

Nvidia DCGM exporter
Slurm Job exporter

Azure HPC Node Health

https://github.com/NVIDIA/dcgm-exporter
https://github.com/guilbaults/slurm-job-exporter
https://github.com/azure/azurehpc-health-checks

Problem

● Hardware metrics are not enough
○ They are helpful to know which GPU / Job failed and the failure

states

Team A

Scheduler

Team C

Model Training
Live Inference

Team A
KEEP CALM

AND
USE PROFILERS!

Nsight systems
Pytorch Profiler

https://developer.nvidia.com/nsight-systems
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

Existing profiling tools

Libraries to profile Sample cpu call stack output on local machineruns in the app process

Problem

● Hardware metrics are not enough
○ They are helpful to know which GPU / Job failed and the failure

states
● Limitations with existing GPU profiling

○ Performance overhead
○ Manual instrumentation
○ Lack of CPU context before/after GPU events
○ Big difference in ease of use for GPU vs CPU workloads.

Team A

Scheduler

Team C

Model Training
Live Inference

Team A
KEEP CALM

AND
USE AMD GPUs!

Team A

Scheduler

Team C

Model Training
Live Inference

Team A

Problem

● Hardware metrics are not enough
○ They are helpful to know which GPU / Job failed and the failure

states
● Limitations with existing GPU profiling

○ Performance overhead
○ Manual instrumentation
○ Lack of CPU context before/after GPU events
○ Big difference in ease of use for GPU vs CPU workloads.

● Observability ecosystem for non nvidia GPUs?

eBPF-based, zero-code
automatic instrumentation

OpenTelemetry tool

Zero instrumentation

Framework agnostic

Low overhead

Advantages of eBPF

● Identifying the important cuda calls
● Writing probes and getting data
● Process CUDA libs and module discovery (dynamic linking)
● Access to CPU context before and after GPU calls!

How EXPERIMENTAL

How

EXPERIMENTAL

SEC"uprobe/cudaLaunchKernel")

int BPF_KPROBE(handle_cuda_launch,

 u64 func_off,

 u64 grid_xy,

 u64 grid_z,

 u64 block_xy,

 u64 block_z,

 uintptr_t argv)

cudaLaunchKernel

cudaLaunchKernel

cudaLaunchKernel - dimensions

cudaLaunchKernel - dimensions

cudaMalloc
SEC"uprobe/cudaMalloc")

int BPF_KPROBE(handle_cuda_malloc, void **devPtr, size_t size)

cudaMemCpy (Host to Device, Device to Host)
SEC"uprobe/cudaMemcpyAsync")

int BPF_KPROBE(handle_cuda_memcpy, void *dst, void *src, size_t size, u8 kind)

cudaMemCpy (Host to Device, Device to Host)

Profiling
if (prog_cfg.capture_stack) {

// Read the Cuda Kernel Launch Stack

e→ustack_sz =

 bpf_get_stack(ctx, e→ustack, sizeof(e→ustack), BPF_F_USER_STACK / sizeof(uint64_t);

}

Profiling

Pytorch kernels! vLLM kernels!

Profiling

Pytorch kernels! vLLM kernels!Rest of the stack?

Profiling (Future)

● No information available on kernel execution time

● No access to GPU hardware APIs to measure Temperature, SM utilization, etc

Limitations with eBPF approach

Recap
● Close the gap between traditional GPU monitoring and modern monitoring

solutions

● More architectures? Donʼt want to instrument every LLM and every framework

● Capture context before/after GPU call

● Instrument more CUDA operations

Have more questions?
Grafana Community Slack: slack.grafana.com

Beyla project: github.com/grafana/beyla
Acknowledgements: GPU profiling at Meta, Nvidia Developer Tools

Thank you!
Q&A

https://slack.grafana.com
http://github.com/grafana/beyla
https://www.youtube.com/watch?v=5xAghByteYc
https://developer.nvidia.com/tools-overview

