
Daniele Lacamera - wolfSSL

www.wolfssl.com

wolfBoot
resilient, quantum-resistant secure boot for all architectures

© Copyright 2025 wolfSSL - CC-BY-SA.

http://www.wolfssl.com

Data in TransitData at Rest Firmware Updates

- Secured with SSL/TLS, SSH

- Possible Transfer Mediums:
TCP/UDP/Bluetooth/Serial/etc

- Secured with Cryptography - Secured with SSL/TLS,
crypto, MQTT

- Prevent malicious firmware
flashing and updates

Main Areas of Focus

Secure boot

● Secure boot prevents running unauthorized software onboard
○ Cryptographic signature attached to all authorized software
○ A secure bootloader will refuse to run non-authentic code

Trusted source

Embedded system

Adversary

● Est. 2018
○ Project started on Cortex-M

○ Based on RFC 9019 (back then “suit” draft) for IoT

○ Presented at FOSDEM 2020 in the IoT devroom

○ ECC, RSA, Ed25519, Ed448, ML-DSA, LMS, XMSS

NIST Post-Quantum Cryptography Standardization

5

● Portability
○ Several architectures supported (MCUs and CPUs)

○ 35+ targets with examples and documentation

○ Can run as library anywhere
● Safety

○ No dynamic allocations

○ No IRQ handling

○ Execution flows predictable at compile time

○ Protected against glitch attacks and fault injections

wolfBoot

● Unique features

○ Delta updates with emergency fallback

○ End-to-end encryption with Chacha or AES

○ TPM integration (offload crypto, store secrets, measured boot)

○ Architecture (and compiler) specific EMFI mitigations

NIST Post-Quantum Cryptography Standardization

6

● Certified security

○ FIPS 140-3 cryptography with wolfCrypt

○ DO-178C up to DAL-A

● Flexibility

○ Portable key tools (Linux/Mac/Windows)

○ Multiple partitions/multiple keys

○ Support for offloading signing to HSM

○ Customized header fields

wolfBoot

● wolfBoot follows RFC9019

○ Small parsers

○ Manifest header

○ Public-key based authentication

○ Trust anchor

○ Hash based integrity verification

○ Update transfers are managed by the application

NIST Post-Quantum Cryptography Standardization

7

Specifications

● Keypair is generated once
○ Private key stays on the server and is never shared

○ Public key is stored on the target and accessible by the bootloader

● Security depends only on the unique private key(s) used to sign the updates
○ Those are never distributed, and stored in the cloud/back-end/HSM etc.

● Sign tool attaches a manifest header to the image
○ The manifest is used to validate the integrity and the authenticity of the image

○ Firmware version is also part of the verified payload and cannot be altered
without the key

● wolfBoot relies on a trust anchor to embed the public keys used to verify the
signature

NIST Post-Quantum Cryptography Standardization

8

Specifications

Embedded system
manufacturer

Secure boot: trusted firmware

Trusted firmware

Embedded system

Embedded system
manufacturer

Secure boot: RFC9019 (2021)

Trusted firmware

Embedded system

Private
key

Public key

SIGN

VERIFY

RFC9019

Secure
bootloader

Embedded system
manufacturer

Secure boot: signed firmware

Trusted firmware

Embedded system

Private
key

Public key

SIGN

VERIFY

Secure bootloader requirement for TA store:

“A trust anchor store must resist modification against unauthorized
insertion, deletion, and modification.”

- RFC9019

Default: keystore is included in wolfBoot binary.

Relies on FLASH write protection provided by the manufacturer:

○ Sufficiently secure for most use cases
○ Does not prevent all HW attacks

Suggested alternatives:

● Trust anchor store implemented with secure element or TPM
● OTP memory (designed for this purpose)
● OOB Trusted Provisioning Authority (TPA)
● (Manufacturer may install trust anchors specific for the device)

NIST Post-Quantum Cryptography Standardization

12

TA store requirements

The ‘keystore’ contains the Trust Anchor

● Can be placed anywhere

● If not directly mapped in memory, public keys can be retrieved with a simple API

● Keygen tool generates a binary with all

Keys and attributes

● OTP Provisioning application (STM32) included

NIST Post-Quantum Cryptography Standardization

13

Management of the keystore

wolfBoot
Keystore

API

Write-protected
FLASH

OTP

HSM/Secure
vault

Locked TPM
ROT

Neighbor
embedded

system

● Microcontroller devices — typical use cases
○ Boot/update/swap on the same FLASH

○ Boot on XIP, UPDATE and SWAP on a secondary flash
(e.g. SPI)

○ When hw-assisted swap is supported: BOOT and
UPDATE on XIP flash, duplicated wolfBoot

● CPU-based systems — some of the most common features
○ Separate stages to initialize systems if required

○ A/B partition election at boot, usually bootloader is on a
different NVM

○ Always load kernel to RAM

○ Multiple partitions/Interaction with other boot stages

NIST Post-Quantum Cryptography Standardization

14

Types of architectures supported

How wolfBoot integrates with wolfTPM:

● Root of Trust (ROT)

○ Hash of public key to NV (optionally locked) with auth

● Cryptographic offloading
○ ECDSA/RSA verification in hardware

● Measured Boot (PCR Extend)

● Sealing a secret e.g. for encrypting or unlocking a disk

○ Seal based on externally signed policy

● Platform authentication lockout
● Parameter Encryption support (AES-CFB)

NIST Post-Quantum Cryptography Standardization

15

Support for TPM 2.0

wolfBoot manages the secure domain in TrustZone-M (ARMv8-M architecture)

● Separate domains, stage application/RTOS in non-secure world
● Provides non-secure callable (NSC) API to access crypto functions

○ Applications may use standard API (PKCS11) to access cryptography
○ TLS sockets and other applications in non-secure domain can use pre-provisioned keys and certificates in

the Keyvault,
generate key pairs, etc.

○ Private keys and secrets are never accessible from non-secure domain

Fully replaces TF-M (removing a lot of unnecessary bloating…)

NIST Post-Quantum Cryptography Standardization

16

Support for secure vault in TrustZone-M

NIST Post-Quantum Cryptography Standardization

17

Port on Intel Tiger Lake
wolfBoot Boot Flow on 11th Gen Intel Core i7

- Execution starts from reset
vector
- Green image is signed with
Intel tools and verified by
Intel Boot Guard

wolfBoot Stage 1:
- Loads and executes FSP
- Memory init in FSP
- Verifies authenticity of
FSP_S
- Verifies wolfBoot stage 2

wolfBoot Stage 2:
- Selects image to boot
- Verifies kernel image
- Loads and stages kernel

Post-quantum secure boot
Securing the boot process with quantum-resistant cryptography

Support for
wolfHSM

wolfPKCS11
Engine for TrustZone-M

PQC Stateful Hash-Based
Signature Scheme support
with:
 + LMS / HSS
 + XMSS / XMSS^MT

Custom TLVs in manifest

Keystore in OTP

LMS/XMSS using native
wolfCrypt
implementation

wolfBoot and Post-Quantum Cryptography

wolfBoot 2.0.0
Nov 11, 2023

19

wolfBoot 2.2.0
July 22, 2024

wolfBoot 2.3.0
Oct 31, 2024

ML_DSA using native
wolfCrypt
implementation,

Hybrid PQC+classic
Secure boot

wolfBoot 2.1.0
April 16, 2024

wolfBoot 2.4.0
Jan 7, 2024

● 2016 NIST Post-Quantum Standardization for Public-Key algorithms required signature
algorithm submissions to be “stateless”

○ “stateful” signature algorithms did not meet the API requirements, standardization was
separate from 2016 competition, coordinated along with IETF

● Stateful Hash-Based Signatures:
○ Not vulnerable to quantum computers

○ Well studied and very old

○ Better performance than stateless algorithms for sign/verify, but very slow keygen

○ Require careful state management; misuse is easy and catastrophic

○ Appropriate for applications where private key resides in an HSM and private key operations
are offline (Ex: firmware signing)

○ Gave a head start to digital signature scheme PQC migration

Stateful Hash-Based Signatures

20

● IETF standardized both of the following Stateful Hash-Based Signature algorithms:

○ XMSS (RFC 8391) - eXtended Merkle Signature Scheme

○ LMS (RFC 8554) - Leighton-Micali Hash-Based Signatures

Stateful Hash-Based Signatures

21

Embedded system
manufacturer

Secure boot: signed firmware

Trusted firmware

Embedded system

Private
key

Public key

SIGN

VERIFY

Embedded system
manufacturer

Secure boot: signed firmware

Trusted firmware

Embedded system

Private
key

Public key

SIGN

VERIFY

✅ Classic algorithms
✅ Stateless PQC (ML-DSA)
🚫 Stateful PQC (LMS, XMSS)

HSM

Embedded system
manufacturer

Secure boot with stateful hash-based crypto

Trusted firmware

Embedded system

Private
key

Public key

SIGN

VERIFY

#
HASH

✅ Stateful PQC (LMS,
XMSS)

● FIPS 203
○ Specifies ML-KEM

○ Based on CRYSTALS-KYBER

NIST Post-Quantum Cryptography Standardization

25

● FIPS 204
○ Specifies ML-DSA

○ Based on CRYSTALS-Dilithium

● FIPS 205
○ Specifies SLH-DSA

○ Based on SPHINCS+ winner

Nist approved PQC algorithms

● FIPS 203
○ Specifies ML-KEM

○ Based on CRYSTALS-KYBER

NIST Post-Quantum Cryptography Standardization

26

● FIPS 204
○ Specifies ML-DSA

○ Based on CRYSTALS-Dilithium

● FIPS 205
○ Specifies SLH-DSA

○ Based on SPHINCS+ winner

Nist approved PQC algorithms

NSA CNSA 2.0

● Notifies parties involved in National
Security Systems (NSS) that new
requirements are coming

● Requirements will mandate a switch to
post-quantum algorithms by 2030

● Mandate starting migration to PQC
secure boot by 2025

● Mandate supporting post-quantum
algorithms exclusively by 2033

● Released September 2022

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF 27

https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

NSA CNSA 2.0

28

Europe Timeline

29

(§ 2.7) The Post-Quantum Cryptography Coordinated Implementation Roadmap should be available
after a period of two years following the publication of this Recommendation, which will be followed
by the development and further adaptation of Post-Quantum Cryptography transition plans of
individual Member States, in accordance with the principles set out in the Post-Quantum
Cryptography Coordinated Implementation Roadmap.

- “Should” define a roadmap by April 2026, but no mentions of
algorithms yet

- Germany, France, The Netherlands leading the effort

● Immediate Concerns
○ Data Harvesting (Harvest Now, Decrypt Later)

■ Encrypted data harvested now by malicious actors, then decrypted later
when quantum computers are available

○ Long-Lived Devices (Deploy and Forget)

■ Devices being deployed to the field and then forgotten will be susceptible to
attack later when quantum computers are available

● Migration paths
■ Use Hybrid Signature schemes (ex: ECDSA + PQC via dual algorithm

signature verifications)

■ Use Hybrid Key Establishment (ex: ECDHE + PQC)

■ Double the symmetric key size (use 256-bit cipher)

■ Bonus: Stay FIPS 140-3 compliant (NIST Certificate #4718; sunsets in 2029)

Post-Quantum Migration strategies

30

● Immediate Concerns
○ Data Harvesting (Harvest Now, Decrypt Later)

■ Encrypted data harvested now by malicious actors, then decrypted later
when quantum computers are available

○ Long-Lived Devices (Deploy and Forget)

■ Devices being deployed to the field and then forgotten will be susceptible to
attack later when quantum computers are available

● Migration paths
■ Use Hybrid Signature schemes (ex: ECDSA + PQC via dual algorithm

signature verifications)

■ Use Hybrid Key Establishment (ex: ECDHE + PQC)

■ Double the symmetric key size (use 256-bit cipher)

■ Bonus: Stay FIPS 140-3 compliant (NIST Certificate #4718; sunsets in 2029)

Post-Quantum Migration strategies

31

Embedded system
manufacturer

Secure boot: signed firmware

Trusted firmware

Embedded system

Private
key

Public key

SIGN

VERIFY

Embedded system
manufacturer

Secure boot: hybrid firmware authentication

Trusted firmware

Embedded system

Private key
(classic)

Public key
(PQC)

SIGN

VERIFY

Private
key (PQC)

SIGN

Public key
(classic)

VERIFY

ML-DSA-87 + ECDSA521 is “best in class” according to current recommendations from NIST/CNSA

facts@wolfssl.com
www.wolfssl.com

Questions?

mailto:facts@wolfssl.com
http://www.wolfssl.com

