
Accelerating QuestDB: Lessons from
A 6x Query Performance Boost

Jaromir Hamala

Core Engineer at QuestDB

Javier Ramirez

Database Advocate at QuestDB

The database is the bottleneck

- Every developer in the 90s

Common use case for a time-series database

Real-time dashboards on
recent data.

Real-time decision making
(i.e. payment fraud).

Historical queries
aggregated by time

chunks.

Meet QuestDB: OSS time-series database

● https://github.com/questdb/questdb (Apache License 2.0)

● High-speed ingestion: InfluxDB line protocol over TCP or HTTP

● Columnar storage format (native or Parquet), partitioned and ordered by time

● Written in Java (90%) and C++/Rust (10%)

● Uses in-house replacement of Java's standard library

● Zero GC, SIMD, parallel SQL execution, SQL JIT compiler

● SQL with time-series extensions: PGWire, HTTP API

https://github.com/questdb/questdb

Time-series databases high level overview

● Time Series Databases specialise in very fast ingestion,
very fast queries over nascent data, and powerful
time-based analytical queries.

● They focus on nascent data, deleting, downsampling,
or slowing-down older data.

Time-series SQL extensions

SELECT pickup_datetime, fare_amount, timestamp, tempF,

windDir FROM trips ASOF JOIN weather WHERE

pickup_datetime in '2018-06-01';

SELECT pickup_datetime, count() FROM trips

WHERE pickup_datetime in '2016-06-13;1M;1y;3'

SAMPLE BY 1w;

SELECT * FROM trades

WHERE symbol in ('BTC-USDT', 'ETH-USDT')

LATEST ON timestamp PARTITION BY symbol;

SELECT

 timestamp, symbol, side, sum(amount) as volume

FROM trades

WHERE side = 'sell' AND timestamp IN today()

SAMPLE BY 1m FILL(NULL);

select timestamp, avg(price) from

(read_parquet('trades.parquet')

timestamp(timestamp)) sample by 15m;

QuestDB in action: quick showcase

https://dashboard.demo.questdb.io/d/fb13b4ab-b1c9-4a54-a920-b60c5fb036
3f/public-dashboard-questdb-io-use-cases-crypto?orgId=1&refresh=750ms

https://demo.questdb.io

https://github.com/questdb/time-series-streaming-analytics-template

https://dashboard.demo.questdb.io/d/fb13b4ab-b1c9-4a54-a920-b60c5fb0363f/public-dashboard-questdb-io-use-cases-crypto?orgId=1&refresh=750ms
https://dashboard.demo.questdb.io/d/fb13b4ab-b1c9-4a54-a920-b60c5fb0363f/public-dashboard-questdb-io-use-cases-crypto?orgId=1&refresh=750ms
https://demo.questdb.io
https://github.com/questdb/time-series-streaming-analytics-template

What makes a decent analytical database?

● SQL

● Columnar storage format

● All HW resources (CPU & RAM) are available for faster query execution

● Complex queries with GROUP BY / JOIN / filter over large volumes of data,
not necessarily accessed over time

How do you improve analytical DB capabilities?

● ClickBench - https://github.com/ClickHouse/ClickBench

○ Results accepted by ClickHouse: https://benchmark.clickhouse.com

● db-benchmark - https://github.com/duckdblabs/db-benchmark

○ Results accepted by DuckDB: https://duckdblabs.github.io/db-benchmark

● TPC benchmarks - https://www.tpc.org

● TSBS - https://github.com/timescale/tsbs

○ Time-series specific, not maintained

https://github.com/ClickHouse/ClickBench
https://benchmark.clickhouse.com
https://github.com/duckdblabs/db-benchmark
https://duckdblabs.github.io/db-benchmark/
https://www.tpc.org
https://github.com/timescale/tsbs

ClickBench

● Created by ClickHouse team in 2022

● Single table with 105 columns and 99M rows (Yandex search events)

● Includes data import, e.g. in CSV, but the main focus is on queries

● 43 queries with complex GROUP BY, WHERE, and ORDER BY clauses

● Only a few of the queries make use of time (QuestDB was already fast there)

● Run on different machines, but most popular are AWS EC2 instances with
EBS volumes

https://github.com/ClickHouse/ClickBench/tree/main

https://github.com/ClickHouse/ClickBench/tree/main

Some sample queries
SELECT COUNT(*) FROM hits;
SELECT COUNT(*) FROM hits WHERE AdvEngineID <> 0;
SELECT count_distinct(UserID) FROM hits;
SELECT count_distinct(SearchPhrase) FROM hits;
SELECT UserID FROM hits WHERE UserID = 435090932899640449;

SELECT ClientIP, ClientIP - 1, ClientIP - 2, ClientIP - 3, COUNT(*) AS c FROM hits GROUP
BY ClientIP, ClientIP - 1, ClientIP - 2, ClientIP - 3 ORDER BY c DESC LIMIT 10;

SELECT TraficSourceID, SearchEngineID, AdvEngineID, CASE WHEN (SearchEngineID = 0 AND
AdvEngineID = 0) THEN Referer ELSE '' END AS Src, URL AS Dst, COUNT(*) AS PageViews FROM
hits WHERE CounterID = 62 AND EventTime >= '2013-07-01T00:00:00Z' AND EventTime <=
'2013-07-31T23:59:59Z' AND IsRefresh = 0 GROUP BY TraficSourceID, SearchEngineID,
AdvEngineID, Src, Dst ORDER BY PageViews DESC LIMIT 1000, 1010;

SELECT TraficSourceID, SearchEngineID, AdvEngineID, CASE WHEN (SearchEngineID = 0 AND
AdvEngineID = 0) THEN Referer ELSE '' END AS Src, URL AS Dst, COUNT(*) AS PageViews FROM
hits WHERE CounterID = 62 AND EventTime >= '2013-07-01T00:00:00Z' AND EventTime <=
'2013-07-31T23:59:59Z' AND IsRefresh = 0 GROUP BY TraficSourceID, SearchEngineID,
AdvEngineID, Src, Dst ORDER BY PageViews DESC LIMIT 1000, 1010;

SELECT SUM(ResolutionWidth), SUM(ResolutionWidth + 1), SUM(ResolutionWidth + 2), SUM(ResolutionWidth + 3),
SUM(ResolutionWidth + 4), SUM(ResolutionWidth + 5), SUM(ResolutionWidth + 6), SUM(ResolutionWidth + 7),
SUM(ResolutionWidth + 8), SUM(ResolutionWidth + 9), SUM(ResolutionWidth + 10), SUM(ResolutionWidth + 11),
SUM(ResolutionWidth + 12), SUM(ResolutionWidth + 13), SUM(ResolutionWidth + 14), SUM(ResolutionWidth + 15),
SUM(ResolutionWidth + 16), SUM(ResolutionWidth + 17), SUM(ResolutionWidth + 18), SUM(ResolutionWidth + 19),
SUM(ResolutionWidth + 20), SUM(ResolutionWidth + 21), SUM(ResolutionWidth + 22), SUM(ResolutionWidth + 23),
SUM(ResolutionWidth + 24), SUM(ResolutionWidth + 25), SUM(ResolutionWidth + 26), SUM(ResolutionWidth + 27),
SUM(ResolutionWidth + 28), SUM(ResolutionWidth + 29), SUM(ResolutionWidth + 30), SUM(ResolutionWidth + 31),
SUM(ResolutionWidth + 32), SUM(ResolutionWidth + 33), SUM(ResolutionWidth + 34), SUM(ResolutionWidth + 35),
SUM(ResolutionWidth + 36), SUM(ResolutionWidth + 37), SUM(ResolutionWidth + 38), SUM(ResolutionWidth + 39),
SUM(ResolutionWidth + 40), SUM(ResolutionWidth + 41), SUM(ResolutionWidth + 42), SUM(ResolutionWidth + 43),
SUM(ResolutionWidth + 44), SUM(ResolutionWidth + 45), SUM(ResolutionWidth + 46), SUM(ResolutionWidth + 47),
SUM(ResolutionWidth + 48), SUM(ResolutionWidth + 49), SUM(ResolutionWidth + 50), SUM(ResolutionWidth + 51),
SUM(ResolutionWidth + 52), SUM(ResolutionWidth + 53), SUM(ResolutionWidth + 54), SUM(ResolutionWidth + 55),
SUM(ResolutionWidth + 56), SUM(ResolutionWidth + 57), SUM(ResolutionWidth + 58), SUM(ResolutionWidth + 59),
SUM(ResolutionWidth + 60), SUM(ResolutionWidth + 61), SUM(ResolutionWidth + 62), SUM(ResolutionWidth + 63),
SUM(ResolutionWidth + 64), SUM(ResolutionWidth + 65), SUM(ResolutionWidth + 66), SUM(ResolutionWidth + 67),
SUM(ResolutionWidth + 68), SUM(ResolutionWidth + 69), SUM(ResolutionWidth + 70), SUM(ResolutionWidth + 71),
SUM(ResolutionWidth + 72), SUM(ResolutionWidth + 73), SUM(ResolutionWidth + 74), SUM(ResolutionWidth + 75),
SUM(ResolutionWidth + 76), SUM(ResolutionWidth + 77), SUM(ResolutionWidth + 78), SUM(ResolutionWidth + 79),
SUM(ResolutionWidth + 80), SUM(ResolutionWidth + 81), SUM(ResolutionWidth + 82), SUM(ResolutionWidth + 83),
SUM(ResolutionWidth + 84), SUM(ResolutionWidth + 85), SUM(ResolutionWidth + 86), SUM(ResolutionWidth + 87),
SUM(ResolutionWidth + 88), SUM(ResolutionWidth + 89) FROM hits;

Some sample queries

https://tinyurl.com/clickbench-2022-10

https://tinyurl.com/clickbench-2022-10

https://tinyurl.com/clickbench-2023-08-18

https://tinyurl.com/clickbench-2023-08-18

https://tinyurl.com/clickbench-2024-09

https://tinyurl.com/clickbench-2024-09

https://tinyurl.com/clickbench-2025-01-29

https://tinyurl.com/clickbench-2025-01-29

https://tinyurl.com/clickbench-2025-01-29

Same hardware (c6a.metal 500gb gp2)

https://tinyurl.com/clickbench-2025-01-29

QuestDB in ClickBench: how it started

The Journey, or There and Back Again

● ~2 years of calendar time

● Done along with major features: Write-Ahead-Log (WAL), replication, window
functions, Parquet and JSON support, etc.

● ~80 patches, including community contributions

● A number of failed optimization attempts

● Even more plans for further steps

Trivial steps

● Added missing SQL functions, e.g. count_distinct() for integer column types
or max()/min() on strings

● Reduced memory footprint of some SQL functions to avoid OOM crashes

SELECT RegionID, count_distinct(UserID) AS u

FROM hits

GROUP BY RegionID

ORDER BY u DESC

LIMIT 10;

QuestDB's JIT compiler

● SQL JIT compiler for filters (WHERE clauses)

● Backend is written in C++ with asmjit library, frontend is in Java

● Emits SIMD (AVX-2) instructions for a subset of filters

● JIT compiled (and Java) filter execution is multi-threaded

SELECT count(*)

FROM hits

WHERE AdvEngineID <> 0;

Predicate Compile Time:

SQL (Java) -> AST (Java) -> IR (Java) -> machine code (C++)

Predicate Execution Time:

JIT compiler improvements

● Expanded supported operators and types

SELECT URL, count(*) AS PageViews

FROM hits

WHERE CounterID = 62

 AND EventTime >= '2013-07-01T00:00:00Z'

 AND EventTime <= '2013-07-31T23:59:59Z'

 AND DontCountHits = 0

 AND IsRefresh = 0

 AND URL IS NOT NULL

GROUP BY URL

ORDER BY PageViews DESC

LIMIT 10;

SQL rewrites

SELECT count_distinct(SearchPhrase)

FROM hits;

-- gets rewritten into:

SELECT count(*)

FROM (

 SELECT SearchPhrase

 FROM hits

 WHERE SearchPhrase IS NOT NULL

 GROUP BY SearchPhrase

);

SQL function optimizations #1

-- uses SWAR-based LIKE operator implementation

SELECT count(*)

FROM hits

WHERE URL LIKE '%google%';

SQL function optimizations #2

-- regexp_replace() uses Java regular expressions, but with a few fast paths

SELECT *

FROM (

 SELECT

 regexp_replace(Referer, '^https?://(?:www\.)?([^/]+)/.*$', '$1') AS k,

 avg(length(Referer)) AS l,

 count(*) AS c,

 min(Referer)

 FROM hits

 WHERE Referer IS NOT NULL

 GROUP BY k

)

WHERE c > 100000

ORDER BY l DESC

LIMIT 25;

Old STRING column type - UTF-16 encoded

Fixed-sized offsets

offsets

0

6

Variable-sized payload, size prefixed

H e l l o 7 F O S ED5 M !

New VARCHAR column type

● Introduced VARCHAR type (UTF-8) instead of old STRING type (UTF-16)

● Layout is similar to what Andy Pavlo calls "German Strings", but with some
differences, including an ASCII bit flag

len + flags

32 bits

prefix

48 bits

offset

48 bits

Varchar header
(column file)

Varchar data
(column file)

H e l l o w o r l d

The elephant in the room

● Only a few GROUP BY queries ran parallel (and used SIMD)

SELECT sum(AdvEngineID), count(*), avg(ResolutionWidth) FROM hits;

SELECT avg(UserID) FROM hits;

SELECT min(EventDate), max(EventDate) FROM hits;

SELECT sum(ResolutionWidth), sum(ResolutionWidth + 1), -- many more sums…
FROM hits;

How do you implement a GROUP BY?

SELECT UserID, count(*) AS c

FROM hits

GROUP BY UserID;

Single-threaded GROUP BY

Row 1 1042

Row 2 1043

… …

Worker thread

… …

1042 count: 1

… …

UserID column Key Value

hits table Hash table
(aggregation result)

Step 1. Scan a new row. Step 2. Upsert UserID key to
the hash table and increment

the count value.

Multi-threaded GROUP BY: aggregation

Row N+1 2105

Row N+2 1042

… …

hits table

Row 1 1042

… 1043

UserID column

Row N 3901

Worker thread 1

Worker thread 2

… …

1042 count: 2

Key Value

Hash tables
(partial aggregation

results)

… …

1042 count: 3

Key Value

Multi-threaded GROUP BY: merge

… …

1042 count: 2

Key Value

Hash tables
(partial aggregation

results)

… …

1042 count: 3

Key Value

Hash table
(final aggregation result)

… …

1042 count: 5

Key Value

… …

Multi-threaded GROUP BY pipeline

Publish tasks

Filter & Aggregate

Merge partial results

Single thread

N threads

Single thread

Parallel GROUP BY v1: any good?

● Simple pipeline, easy to implement

● Scales nicely when there are not so many groups (distinct UserID values)

● Yet, high cardinality (>= 100K groups) is a problem

Multi-threaded GROUP BY pipeline: the cardinality problem

Publish tasks

Filter & Aggregate

Merge partial results

Single thread

N threads

Single thread
Scalability
bottleneck

Radix-partitioning

1042

Key

0x3bdd78af08860f9f

Hash code

8 bits

1042 count: 5

Key Value

Partition 174

… …

Key Value

Partition 0

… …

Key Value

Partition 255

Step 2. Calculate
partition index:

0x0f9f % 255 = 174

Step 1. Calculate
hash code

High-cardinality multi-threaded GROUP BY

Row N+1 2105

Row N+2 1042

… …

hits table

Row 1 1042

… 1043

UserID column

Row N 3901

Worker thread 1

Worker thread 2

Key Value

Partition hash tables
(partial aggregation

results)

… …

256 partitions

Key Value

… …

High-cardinality multi-threaded GROUP BY pipeline

Publish aggregate tasks

Filter & Aggregate

Publish merge tasks

Single thread

N threads

Single thread

Merge partition parts N threads

Collect results Single thread

Parallel GROUP BY v2

● More complex pipeline, a bit harder to implement

● Scales nicely for any cardinality

● Potentially parallel ORDER BY + LIMIT when the cardinality is high

● Used for multi-threaded GROUP BY and SAMPLE BY

SELECT RegionID, count_distinct(UserID) AS u FROM hits GROUP BY RegionID

ORDER BY u DESC LIMIT 10;

The more hash tables, the merrier

● Introduced a number of specialized hash tables

● All use open addressing with linear probing

● Some preserve insertion order

So far, we have:

● A "general purpose" hash table for variable-size keys

● Hash tables with small fixed-size keys (32-bit and 64-bit integers)

● A lookup table for 16-bit keys

● A hash table for single VARCHAR key

Lessons learned

● A fast time-series database must be a good analytical database

● Benchmarks made by 3rd-parties help when deciding what to optimize

● Improving query engine efficiency requires discipline

● As a nice side effect, we made SAMPLE BY run parallel

● We have lots of plans for the next steps.

THANKS!

Jaromir Hamala

Core Engineer at QuestDB

Javier Ramirez

Database Advocate at QuestDB

https://github.com/questdb/questdb
https://questdb.io
https://demo.questdb.io
https://slack.questdb.io/
https://github.com/questdb/time-series-streaming-analytics-template

@supercoco9
@supercoco9.bsky.social
@j@chaos.social
linkedin.com/in/ramirez

