
Distributed Tracing 
in Server-Side Swift

Moritz Lang @ FOSDEM 25





Agenda

• Swift Observability 

• Swift Distributed Tracing 📦 

• Tracing ❤ Logging 

• OpenTelemetry & Swift OTel 📦 

• Next steps



Swift Observability

Received HTTP request.
route=/languageshttp.method=post

Authenticated user.
user.id=42

Chose favorite language.
language=swift



Product Catalog





Logging

• Capture what happened at a 
specific point in time 

• Detailed via metadata 

• Hard to understand a specific 
request as a whole

Received HTTP request.
route=/languagehttp.method=post

Authenticated user.
user.id=42

Updated favorite language.
language.name=swiftuser.id=42

Time







Metrics

• Aggregated 

• High-level overview 

• Indicate traffic spikes 

• Alert when errors ramp up





Rate of active requests per endpoint



Distributed Tracing

• Specific to one request 

• Trace comprised of multiple 
spans (operations) 

• Both high-level and detailed 

• Highlights where time is spent 

• Sequential and concurrent 

• Spot which operation caused a 
request failure

Time

☁
Service B

☁
Service A



























Swift Distributed Tracing 📦
github.com/apple/swift-distributed-tracing

• Similar to swift-log and swift-metrics 

• Provides only the interface 

• Three target audiences 

• Library Authors 

• Instrumentation Authors 

• Application Developers

http://github.com/apple/swift-distributed-tracing


Library Authors

• Agnostic of the specific tracer 

• Use withSpan and similar APIs



Instrumentation Authors

• Conform to the Tracer protocol 

• Export the recorded spans to a specific Distributed Tracing system



Application Developers

• Select one Tracer implementation 

• Use libraries that support Swift Distributed Tracing 

• Optionally create additional spans



Tracer
• Associated Span type 

• Ability to create spans



Span
• Mutable until finished 

• Must be finished by calling 
end(instant:) 

• Uniquely identified via 
ServiceContext



ServiceContext
• Contains span/trace ID 

• Stored in task-local 

• Automatically create child 
spans



Context Propagation
Distributed Tracing

• Carry tracing identifiers across async/process boundaries 

• Example: Client/Server 

• Client: Injects the context into HTTP headers 

• Server: Extracts the context from HTTP headers 

• Server: Creates child span by using the propagated context



Instrument
• Agnostic about carrier (e.g. 

HTTP headers) 

• Implementors know about 
keys/values 

• Extended by Tracer protocol



Tracing ❤ Logging

• Uses swift-log metadata 
providers 

• Transforms task-local 
ServiceContext into log 
metadata

Log statement 3
Trace ID 2Span ID 1

Log statement 2
Trace ID 1Span ID 2

Log statement 1
Trace ID 1Span ID 1







• Open observability standard 

• Supports Logging, Metrics, and Distributed Tracing 

• OpenTelemetry Protocol (OTLP) 

• Supported by various observability tools



Swift OTel 📦
github.com/swift-otel/swift-otel

• OTLP exporters for Server-Side Swift 

• Conforms to Tracer protocol 

• Supports Metrics

http://github.com/swift-otel/swift-otel


Swift OTel 📦
Tracer Bootstrap



Next Steps 🚀

• Log exporting in Swift OTel 

• Built-in Swift Distributed Tracing in more libraries 

• Database drivers 

• AsyncHTTPClient (swift-server/async-http-client/pull/320) 

• Swift OTel 1.0

https://github.com/swift-server/async-http-client/pull/320


Links 🔗

Swift Distributed Tracing 📦 Swift OTel 📦


