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Truncated distributions
▶ Multivariate probability distribution truncated to a convex set
▶ Distributions: uniform, gaussian, logconcave, etc
▶ Convex sets: polygons/polytopes etc



Sampling from (truncated) distributions

Problem
Sample (efficiently) from a (truncated) distribution

Why?

▶ Fundamental problem in mathematics and computer science

▶ Building block for integration & volume computation
▶ Applications

▶ Bayesian inference (estimation of constraint parameters)
▶ Constrained optimization
▶ Finance (portfolio contraints)
▶ Computational biology (metabolic networks)



Simple cases and simplistic approaches
▶ Fundamental shapes (hypercube, hypershpere, simplex) admit

efficient methods

▶ Acception/rejection sampling does not scale to high
dimensions
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How to sample efficiently?

▶ A Geometric Random Walk starts at some interior point and
at each step moves to a ”neighboring” point, chosen according
to some distribution depending only on the current point.

▶ A Marcov Chain that converges to some target distribution
after a number of steps
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Steps of a ball walk.

Uniform target distribution



Three basic walks: (1) Ball walk

Ball Walk(K , p, δ, f ): convex K ⊂ Rd , p ∈ P, radius δ, f :
Rd → R+

1. Pick a uniform random point x in B(p, δ).

2. return x with probability min

{
1, f (x)f (p)

}
;

return p with the remaining probability.
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If the density is not restricted in K, then it is the Metropolis-Hastings

algorithm.



Three basic walks: (2) Hit-and-Run

Hit and Run(K , p, f ): convex K ⊂ Rd , point p ∈ P, f : Rd →
R+

1. Pick uniformly a line ℓ through p.

2. return a random point on the chord ℓ ∩ K chosen from
the distribution πℓ,f restricted in K ∩ ℓ.
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▶ Q: How do we compute ℓ ∩ K? Can we do it exactly?



Three basic walks: (3) Billiard walk - Uniform case

BW(K , pi , τ,R) [Polyak’14]

1. Generate the length of the trajectory L = −τ ln η, η ∼ U(0, 1).

2. Pick a uniform direction v to define the trajectory. then the
direction becomes v ← v − 2⟨v , s⟩.

3. If the trajectory meets a boundary with internal normal
s, ||s|| = 1,

4. return the end of the trajectory as pi+1.
If the number of reflections exceeds R, then return pi+1 = pi .
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How many steps are needed to converge?

▶ Uniform sampling from the hypercube [−1, 1]200 and
projection to R3.

▶ Rows: Ball Walk, Coordinate Directions Hit and Run,
Random Directions Hit and Run, Billiard Walk.

▶ Columns: walk length, {1, 50, 100, 150, 200}



Convergence rate (or when is the right time to stop)

▶ Theoretical bounds (pessimistic) ̸= practice

▶ Statistical tests: effective sample size (ESS), potential scale
reduction factor (psrf)

▶ Challenge: error guarantees in practice where sampling is used
as a subroutine (e.g. Monte-Carlo integration)



sampling from high dimensional distributions

▶ C++ library
▶ R (CRAN:1.1.2, github:1.2.0)
▶ Python interfaces (only github, todo: pip)

▶ Algorithms for sampling, integration/volume, copulas

▶ Optimizations for different (non) convex bodies (polytopes,
spectahedra, zonotopes)

▶ Utilities for financial and biolgical applications
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Applications in finance
Portfolio analysis

▶ The set of portfolios (investments in a collection of stocks) is
a simplex.

▶ Constraints on investments yield a general polytope.

▶ Portfolios with same volatility (the degree of variation of a
trading price series over time) lie on an ellipsoid.

Randomized geometric tools for anomaly detection in stock markets

[Bachelard,Chalkis,F,Tsigaridas’23]



Applications in structural biology
[Chalkis,F, Tsigaridas, Zafeiropoulos]

▶ Metabolic networks model the reactions of metabolites in an
organim or system.

▶ Each reaction has a flow or rate called flux.
▶ The set of states of the network where fluxes are in balance

(rate of production = rate of consumption) is a convex
polytope.

▶ Sampling from polytope yield probability densities for reaction
fluxes (example: thioredoxin)



GeomScale org

C++ library: sampling, integration/volume from
convex bodies

Python interface with extra utilities for metabolic
network analysis (FBA, copulas, visualization)

R interface with extra utilities for finance (portfolio
analysis)

————————————————————————————
NumFOCUS Affiliated Project.

Support from an open source community.
Thank you!


