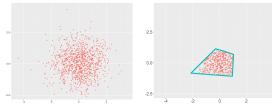
volesti: sampling efficiently from high dimensional distributions

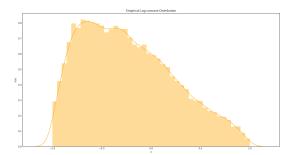
Vissarion Fisikopoulos

data analytics @ FOSDEM 2025

Truncated distributions

- Multivariate probability distribution truncated to a convex set
- Distributions: uniform, gaussian, logconcave, etc
- Convex sets: polygons/polytopes etc





Sampling from (truncated) distributions

Problem Sample (efficiently) from a (truncated) distribution

Why?

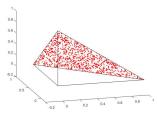
- Fundamental problem in mathematics and computer science
- Building block for integration & volume computation

Applications

- Bayesian inference (estimation of constraint parameters)
- Constrained optimization
- Finance (portfolio contraints)
- Computational biology (metabolic networks)

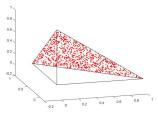
Simple cases and simplistic approaches

 Fundamental shapes (hypercube, hypershpere, simplex) admit efficient methods

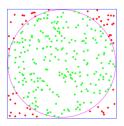


Simple cases and simplistic approaches

 Fundamental shapes (hypercube, hypershpere, simplex) admit efficient methods

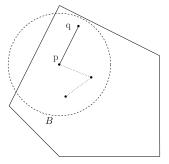


 Acception/rejection sampling does not scale to high dimensions

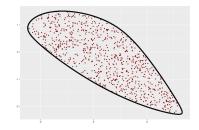


How to sample efficiently?

- A Geometric Random Walk starts at some interior point and at each step moves to a "neighboring" point, chosen according to some distribution depending only on the current point.
- A Marcov Chain that converges to some target distribution after a number of steps



Steps of a ball walk.

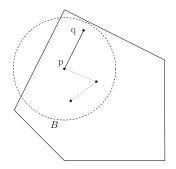


Uniform target distribution

Three basic walks: (1) Ball walk

Ball Walk(K, p, δ, f): convex $K \subset \mathbb{R}^d$, $p \in P$, radius $\delta, f : \mathbb{R}^d \to \mathbb{R}_+$

- 1. Pick a uniform random point x in $B(p, \delta)$.
- 2. **return** x with probability min $\left\{1, \frac{f(x)}{f(p)}\right\}$; **return** p with the remaining probability.

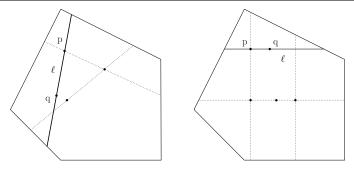


If the density is not restricted in K, then it is the **Metropolis-Hastings**

Three basic walks: (2) Hit-and-Run

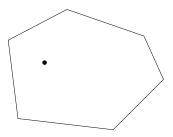
Hit and $\operatorname{Run}(K, p, f)$: convex $K \subset \mathbb{R}^d$, point $p \in P$, $f : \mathbb{R}^d \to \mathbb{R}_+$

- 1. Pick uniformly a line ℓ through p.
- 2. **return** a random point on the chord $\ell \cap K$ chosen from the distribution $\pi_{\ell,f}$ restricted in $K \cap \ell$.

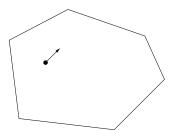


Q: How do we compute $\ell \cap K$? Can we do it *exactly*?

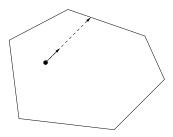
- 1. Generate the length of the trajectory $L = -\tau \ln \eta$, $\eta \sim U(0,1)$.
- 2. Pick a uniform direction v to define the trajectory. then the direction becomes $v \leftarrow v 2\langle v, s \rangle$.
- 3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,
- 4. **return** the end of the trajectory as p_{i+1} . If the number of reflections exceeds *R*, then **return** $p_{i+1} = p_i$.



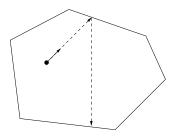
- 1. Generate the length of the trajectory $L = -\tau \ln \eta$, $\eta \sim U(0,1)$.
- 2. Pick a uniform direction v to define the trajectory. then the direction becomes $v \leftarrow v 2\langle v, s \rangle$.
- 3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,
- 4. **return** the end of the trajectory as p_{i+1} . If the number of reflections exceeds *R*, then **return** $p_{i+1} = p_i$.



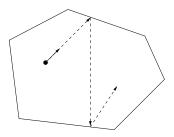
- 1. Generate the length of the trajectory $L = -\tau \ln \eta$, $\eta \sim U(0,1)$.
- 2. Pick a uniform direction v to define the trajectory. then the direction becomes $v \leftarrow v 2\langle v, s \rangle$.
- 3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,
- 4. **return** the end of the trajectory as p_{i+1} . If the number of reflections exceeds *R*, then **return** $p_{i+1} = p_i$.



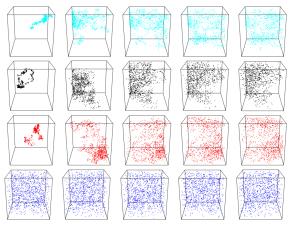
- 1. Generate the length of the trajectory $L = -\tau \ln \eta$, $\eta \sim U(0,1)$.
- 2. Pick a uniform direction v to define the trajectory. then the direction becomes $v \leftarrow v 2\langle v, s \rangle$.
- 3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,
- 4. **return** the end of the trajectory as p_{i+1} . If the number of reflections exceeds *R*, then **return** $p_{i+1} = p_i$.



- 1. Generate the length of the trajectory $L = -\tau \ln \eta$, $\eta \sim U(0,1)$.
- 2. Pick a uniform direction v to define the trajectory. then the direction becomes $v \leftarrow v 2\langle v, s \rangle$.
- 3. If the trajectory meets a boundary with internal normal s, ||s|| = 1,
- 4. **return** the end of the trajectory as p_{i+1} . If the number of reflections exceeds *R*, then **return** $p_{i+1} = p_i$.



How many steps are needed to converge?



- Uniform sampling from the hypercube $[-1,1]^{200}$ and projection to \mathbb{R}^3 .
- Rows: Ball Walk, Coordinate Directions Hit and Run, Random Directions Hit and Run, Billiard Walk.
- Columns: walk length, {1, 50, 100, 150, 200}

Convergence rate (or when is the right time to stop)

- ▶ Theoretical bounds (pessimistic) ≠ practice
- Statistical tests: effective sample size (ESS), potential scale reduction factor (psrf)
- Challenge: error guarantees in practice where sampling is used as a subroutine (e.g. Monte-Carlo integration)

C++ library

- R (CRAN:1.1.2, github:1.2.0)
- Python interfaces (only github, todo: pip)

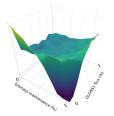
Volesti sampling from high dimensional distributions

C++ library

- R (CRAN:1.1.2, github:1.2.0)
- Python interfaces (only github, todo: pip)

Algorithms for sampling, integration/volume, copulas

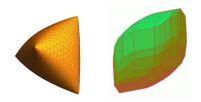
Dependency of GLGNS1 flux - Host biomass



Volesti sampling from high dimensional distributions

C++ library

- R (CRAN:1.1.2, github:1.2.0)
- Python interfaces (only github, todo: pip)
- Algorithms for sampling, integration/volume, copulas
- Optimizations for different (non) convex bodies (polytopes, spectahedra, zonotopes)



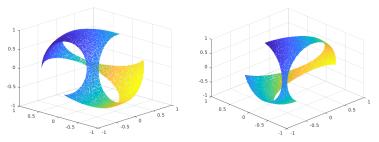
C++ library

- R (CRAN:1.1.2, github:1.2.0)
- Python interfaces (only github, todo: pip)
- Algorithms for sampling, integration/volume, copulas
- Optimizations for different (non) convex bodies (polytopes, spectahedra, zonotopes)
- Utilities for financial and biolgical applications

Applications in finance

Portfolio analysis

- The set of portfolios (investments in a collection of stocks) is a simplex.
- Constraints on investments yield a general polytope.
- Portfolios with same volatility (the degree of variation of a trading price series over time) lie on an ellipsoid.

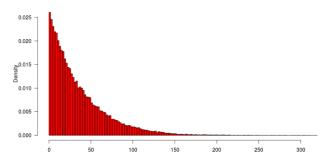


Randomized geometric tools for anomaly detection in stock markets [Bachelard,Chalkis,F,Tsigaridas'23]

Applications in structural biology

[Chalkis,F, Tsigaridas, Zafeiropoulos]

- Metabolic networks model the reactions of metabolites in an organim or system.
- Each reaction has a flow or rate called flux.
- The set of states of the network where fluxes are in balance (rate of production = rate of consumption) is a convex polytope.
- Sampling from polytope yield probability densities for reaction fluxes (example: thioredoxin)



C++ library: sampling, integration/volume from convex bodies

Python interface with extra utilities for metabolic network analysis (FBA, copulas, visualization)

R interface with extra utilities for finance (portfolio analysis)

NumFOCUS Affiliated Project.

Support from an open source community.

Thank you!